
1 September 2000 Delphi Informant Magazine

September 2000, Volume 6, Number 9

Cover Art By: Arthur Dugoni

ON THE COVER
6 Dynamic Delphi
Word Control: Part I — Ron Gray
Mr Gray presents the Microsoft Word object model, demonstrates how
to control it using run-time and compile-time Automation, and provides
sample source code for Delphi 4/5 and Word 97/2000.

FEATURES
10 Distributed Delphi
The Gold Standard, MIDAS & COM: Part II — Bill Todd
Completing his two-part series, Mr Todd presents two additional ways
for a COM server to call a COM client’s methods: via Automation, and
through a callback interface.

14 OP Tech
Database Persistent Objects: Part I — Keith Wood
Mr Wood shows how classes can be set up to automatically store them-
selves to, and retrieve themselves from, a standard relational database,
with minimal effort using RTTI.

21 The API Calls
Raw API Programming — Andrew J. Wozniewicz
Mr Wozniewicz demonstrates how to code without the VCL, when an
executable’s size and speed are critical considerations, e.g. real-time
data acquisition, restricted memory/CPU, etc.

28 First Look
InterBase 6 — Bill Todd
Famous for being open source, Mr Todd explains there’s much more
that’s new with IB6, including large exact numerics, new administrative
tools, replication, and much more.

REVIEWS
32 ReportBuilder 5.0 Enterprise
 Product Review by Tim Sullivan

DEPARTMENTS
2 Delphi Tools
5 Newsline
36 Best Practices by Clay Shannon
37 File | New by Alan C. Moore, Ph.D.

2 September 2000 Delphi Informant Magazine

Delphi

T O O L S

New Products
and Solutions
 dtSearch Corp. announced extensive built-in thesaurus); of PDF files in Adobe Acrobat
dtSearch Launches Version 6.0 of dtSearch Web and Text Retrieval Engine
dtSearch Web 6.0 and the
dtSearch Text Retrieval Engine,
which feature comprehensive
support for XML, including
indexing and searching of multi-
layered nested fields.
 Version 6.0 supports the Linux
platform, and enhances support
for Windows 2000/CE. Other
new features include Java support
through a JNI interface to the
dtSearch Text Retrieval Engine;
Unicode support to enhance
existing support of European-
based languages and to add sup-
port for double-byte character
sets, such as Chinese and Japanese
text; and added integration with
and support for Microsoft Office
2000 and Corel Office 2000.
 Proprietary indexing and
searching algorithms allow for
faster indexing and searching
performance even over large
databases and other diverse col-
lections of documents. dtSearch
offers over two dozen indexed
and unindexed text search
options. Search features include
a scrolling list of indexed
words; fuzzy search level,
adjustable from 1 to 10 using
a proprietary fuzzy search
algorithm; concept searching
(including a customizable,
natural-language searching with
advanced relevancy ranking by
“hit” density and rarity; bool-
ean (and/or/not); proximity;
variable term weighting; stem-
ming; field; and range.
 dtSearch Web uses “point-
and-click” set-up to let users
add instant searching to a Web
site. Built-in proprietary HTML
file conversion supports search-
ing of word processor, database,
spreadsheet, ZIP, and other file
types. After a search, dtSearch
Web displays retrieved docu-
ments in the user’s browser with
highlighted hits, while preserv-
ing all HTML links and images.
dtSearch Web also provides full
PDF support, including display
 Bowne Global Solutions
Reader with highlighted hits.
 dtSearch Text Retrieval Engine
allows developers to add searching
to any PC, network, or Internet/-
intranet product. It’s both a
COM object and a DLL. In addi-
tion to Java support, it includes
sample source code in Delphi,
C++, Visual C++, Visual Basic,
and Active Server Pages (ASP).
 Finally, the dtSearch Text
Retrieval Engine also includes
sample source code to dtSearch
Web in both ASP and ISAPI-
based versions.

dtSearch Corp.
Price: US$999 per server.
Phone: (800) IT-FINDS
Web Site: http://www.dtsearch.com
Digital Metaphors Releases Learning ReportBuilder

 Digital Metaphors Corp.
announced the release of Learn-
ing ReportBuilder, an interactive
learning tool designed to teach
non-developers how to use
reporting solutions built using
ReportBuilder, the reporting tool
for Delphi.
 Learning ReportBuilder pro-
vides documentation for the
end users of applications built
using ReportBuilder. Learning
ReportBuilder includes a
125-page guide in PDF format,
a stand-alone reporting appli-
cation, and an online Help
file, all intended to aid end
users in learning the intricacies
of reporting in general, and
ReportBuilder in particular.

Digital Metaphors Corp.
Price: Free
Phone: (972) 931-1941
Web Site: http://www.digital-
metaphors.com/learnrb/learnrb.exe
InfoCan Management Announces Internet Development with Delphi
anese, Korean, and Spanish,
 InfoCan Management
announced Internet Development
with Delphi, a new course in
Web-based development training.
It is a five-day, hands-on course
that utilizes the Internet tools
Borland provides in Delphi for
Web-based development.
 The course targets developers
with a working knowledge of
Delphi who need to scale their
applications to the Internet. It
is strongly recommended to have
Delphi 5 Client/Server Foun-
dations, or equivalent working
knowledge on topics covered, as
a prerequisite.
 The course provides practical
information on creating an inte-
grated Web application that uti-
lizes all of the Delphi Web-based
technologies. The courseware
provides students practical appli-
cations and scenarios, including
Internet Components, Active-
Form, and Web Servers Applica-
tions — CGI, ISAPI, Borland
WebBroker Technology, State and
Persistence, Active Server Pages,
Advanced Security, and Internet-
Express. It also covers the pros
and cons of techniques under dif-
ferent situations.

InfoCan Management
Price: CDN$2,750 (approx. US$1,850).
Phone: (888) INFOCAN
Web Site: http://www.infocan.com
Bowne Global Solutions Launches ExtraGLOBAL
launched ExtraGLOBAL, an
extranet that speeds the devel-
opment, testing, and delivery
of multi-language products to
technology users and markets
worldwide.
 Working with Palm, Bowne
Global Solutions provides
internationalization, localiza-
tion, and testing for all Palm
III-, V-, and VII-series hand-
held systems for use in seven
languages: traditional Chinese,
French, German, Italian, Jap-
including the operating system,
desktop applications,
programming tools, and mar-
keting and customer support
materials. Bowne also localized
and tested the Palm IIIc, Palm
Vx, and Palm Operating System
into French, Italian, German,
Japanese, and Spanish.

Bowne Global Solutions
Price: Contact Bowne for information.
Phone: (323) 866-1000
Web Site: http://www.bowneglobal.com

http://www.dtsearch.com
http://www.digital-metaphors.com/learnrb/learnrb.exe
http://www.infocan.com
http://www.bowneglobal.com

3 September 2000 Delphi Informant Magazin

Delphi

T O O L S

New Products
and Solutions
 ProtoView Development majority of styles for this com- The ScheduleX product now
ProtoView Launches ActiveX Component Suite 8
released ActiveX Component
Suite 8. The ActiveX Com-
ponent Suite is comprised of
the Data Explorer, DataTable,
ScheduleX, and TreeViewX
products. Tipping the scales
at thirty-one components, ver-
sion 8 includes three new addi-
tions: Property Browser, Color
Combo, and Image Combo.
 The ProtoView Property
Browser allows developers to add
a properties/style sheet to their
applications, giving end users the
ability to edit the look and feel
of their application and com-
ponents in the interface at run
time. The Property Browser can
also be used as a data-entry form
for application users to have
access to domain-specific proper-
ties of server-side components.
 The Property Browser supports
color and font options and can
include any user-defined prop-
erty. It uses standard string
(text), numeric, and drop-down
lists to select style options on
properties. Drop-down lists can
consist of text or can display
“...” buttons to bring up custom
dialog boxes when editing a
field.
 The Property Browser also
includes Color Combo and
Image Combo for color and
image property editing. Color
Combo and Image Combo can
be used for in-cell editing
of properties in the Property
Browser, or as stand-alone com-
ponents in other areas of applica-
tion development. Both support
feature-rich properties pages that
allow developers to set the
e

ponent without code.
 Version 8 also adds improve-
ments to “browser-exclusive”
features. The DataTable grid
component now provides a
method to allow developers to
get the common print dialog
box. This allows developers to
add functionality to get the
common print dialog box for
Internet Explorer, allowing end
users to set printer specifications
at run time.
 Tabs have also been added
with version 8. With tabs, the
Outlook Bar and Data Explorer
UI component can have tabs
that consist of multiple trees and
forms attached to them. Using
the Data Explorer UI com-
ponent and the Outlook Bar,
developers create the user inter-
face “shell” commonly found
in applications like Microsoft
Outlook. With the addition of
tabs, developers can bind to any
number of data sources or load
multiple forms on the same node
click. Images can be set for tabs,
and the orientation of tabs can
be placed on any side of the
window (top, bottom, left, and
right).
 DataTable 8 includes optimi-
zations to existing sorting and
printing features. For sorting, the
addition of a BubbleSort option
has been added for working
with common data. For printing,
additional print methods have
been added to customize headers
and footers. Using this method,
developers can take DataTable
grid data and insert it into exist-
ing print reports and forms.
 South American releases
includes Date Edit and Time
Edit (also found in DataTable).
Date Edit has been enhanced
to support the ScheduleX cal-
endar for its drop-down dis-
play. The ScheduleX calendar
supports multiple lines of text
in date cells with word wrap-
ping. User interface features,
such as Outlook-style time dis-
play and “all day” appoint-
ments, have also been added to
the DayView.
 For TreeViewX, multiple selec-
tion drag-and-drop has been
added. With this feature, end
users can select any number of
nodes and drag-and-drop them
to another treeview.

ProtoView Development
Price: US$695. Products in the ActiveX
Component Suite are also sold separately:
Data Explorer 8, DataTable 8, and ScheduleX
8, US$395 each; TreeViewX 8, US$199.
Phone: (800) 231-8588 or
(609) 655-5000
Web Site: http://www.protoview.com/order
and various views can be
 Netronic Software and its US and
Netronic Releases VC-XGantt
affiliate company, American
Netronic, Inc., released VC-
XGantt, an ActiveX control
that adds interactive Gantt-
style functionality into all pro-
gramming environments that
accept OCX controls. The
custom control was developed
to relieve programmers of the
tedium and complexity of
coding high-level graphical
objects to represent bars and
milestones below a time
ribbon. The North, Central,
are effective immediately.
 VC-XGantt allows program-
mers to simply define a control
region on a form (or Window)
to create an instant Gantt
charting application. Custom
property pages allow pro-
grammers to choose from hun-
dreds of features. Interactive,
simultaneous histograms are
available, and all printing is
handled automatically by VC-
XGantt. The control can be
deployed on a Web page,
exported to a compact Web-
viewer format for manage-
ment-level reporting directly
from the Web.

Netronic Software/American
Netronic, Inc.
Price: US$3,495 (includes the software
development kit on CD-ROM, hard-copy
and electronic documentation, sample
source code examples, and 30-day free
technical support).
Phone: (800) 447-2633
Web Site: http://www.netronic-us.com

http://www.protoview.com/order
http://www.netronic-us.com

4 September 2000 Delphi Informant Magazin

Delphi

T O O L S

New Products
and Solutions
LEAD Technologies Announces LEADTOOLS 12

 LEAD Technologies, Inc.
announced the release of
LEADTOOLS 12. Version 12
provides new and enhanced
features in all five of LEAD’s
imaging engines (Raster, Docu-
ment, Multimedia, Vector, and
Medical).
 New features in LEAD-
TOOLS’ Raster Imaging
engine include the ability to
load and save TIFF files with
CMP compression; faster JPEG
compression and decompres-
sion; the ability to load and
save uncompressed SGI files
and RLE compressed SGI files;
a magnifying glass tool; a
new Magic wand that allows
a region to be created from
an X-and-Y location and a
color tolerance; and a pictur-
ized algorithm that provides
more options for selection and
use of images.
 New features in LEAD-
TOOLS’ Document Imaging
engine include loading and
saving TIFF files with JBIG
e

compression; faster loading of
1-bit TIFF files; new document
clean-up features, such as hole-
punch removal, line removal,
border removal, invert text,
smooth filter, and dot removal;
and an updated barcode engine.
 New features in LEAD-
TOOLS’ Multimedia Imaging
engine include added support
for saving multimedia files via
DirectShow in Multimedia tool-
kits; enhanced NT compatibility
in multimedia tools; more con-
trol over saving audio streams;
and programmatic configuration
of video/audio codecs.
 New features in LEAD-
TOOLS’ Vector Imaging engine
include support for DWG and
DWF; support for saving vector
images as a DXF inside a TIFF
file; a comprehensive drawing
toolkit; improved layer support;
and the ability to maintain 3D
text as compressed vector data.
 New features in LEAD-
TOOLS’ Medical Imaging
engine include support for
the latest version of the
DICOM 3.0 specification; sup-
port for additional DICOM
classes, including Radiotherapy
Beams Treatment Record Stor-
age, Radiotherapy Brachy
Treatment Record Storage, Vis-
ible Light Endoscopic Image
Storage, and more; optimized
DICOM image load process-
ing; and a caching mechanism
between disk and memory to
optimize speed.
 Other important global
changes in version 12 include
a reduction in the number
of TLS slots (thread local
storage) used by all LEAD-
TOOLS DLLs. LEADTOOLS
version 12 now uses up to
two TLS slots, freeing up
system resources and reducing
the likelihood of conflicts.

LEAD Technologies, Inc.
Price: From US$495 (visit Web site or call
for more information).
Phone: (704) 332-5532
Web Site: http://www.leadtools.com
 Tools&Comps announced corporate applications. fields,

Tools&Comps Announces TUsersCS Security Component 1.5
TUsersCS Security Component
1.5, the latest upgrade to the
company’s end-user security
administration tool. TUsersCS
was designed for applications
that run in a client/server envi-
ronment and need flexibility in
the security control. TUsersCS
makes it easier to implement
end-user control in small or
 The component allows a
developer to control access to
an application through a login
screen, where a user name and
password are requested. The
component allows a developer
to grant or deny a user access
to various components inside
an application, such as buttons,
panels, DBnavigators, DBgrids,
toolbars, menu items,
and virtually any TControl
descendant. The component
works by disabling or making
invisible the components that
the user has no permission to
use, view, or modify.
 The TUsersCS package comes
with another component,
TUsersCSReg, which allows the
developer to register at design
time the components he wants
to protect. The developer acti-
vates the Component Registra-
tion Form and checks the most
relevant components. The devel-
oper can also change the caption
value to change the text that will
be shown in the User Adminis-
tration Module.
 The User Administration
Module shows a list of the
application’s forms and, to the
selected form, shows its com-
ponents in a TTreeview that
imitates the form’s component
hierarchy.

Tools&Comps
Price: US$249.95 for a single license.
Phone: 55 27 99602760
Web Site: http://www.toolsandcomps.com

http://www.leadtools.com
http://www.toolsandcomps.com

5 September 2000 Delphi Informant Magazin

News

L I N E

September 2000

The latest build of Kylix as it appea
 Scotts Valley, CA — Inprise/- our board concluded that it i

Inprise/Borland and Corel Terminate Proposed Merger
Borland Corp. announced its
merger agreement with Corel
Corp. has been terminated by
mutual agreement of the two
companies without payment
of any termination fees. The
reciprocal stock option agree-
ments have also been termi-
nated.
 Dale Fuller, Inprise/Borland
interim president and CEO
said, “Much has changed since
the merger was agreed to more
than three months ago, and
e

rs on KDE.
would be best to cancel the
merger on an amicable basis.”
 In January of 2000, Inprise/
-Borland and Corel entered

nto a confidentiality agree-
ment that included a standard
three-year standstill covenant.
That agreement remains in
effect.
Inprise/Borland Offers JBuilder Handheld Express

 Scotts Valley, CA — Inprise/-
Borland released a preview version
of JBuilder Handheld Express,
an extension for the mobile
market to Inprise/Borland’s
JBuilder 3.5, a Java technology
development tool. The preview
version of JBuilder Handheld
Express enables users to develop
Java solutions using the Java 2
Micro Edition (J2ME) software
development kit, and deploy their
application to the Palm OS. The
preview software is available for
download at no charge via http://
www.borland.com/jbuilder/hhe.
 JBuilder provides features that
dynamically adapt to any J2ME
profile, including the Mobile
Information Device Profiles cur-
rently being developed through
the Java Community ProcessSM.
 The product is based on J2ME
Connected Limited Device Con-
figuration (CLDC), a Java run
time and virtual machine opti-
mized for consumer and embed-
ded devices, such as cell phones,
pagers, and Personal Digital
Assistants. CDLC version 1.0 is
available directly from Sun’s Web
site at no charge for develop-
ment purposes. Applications can
be written and run on any device
that contains a CLDC-compati-
ble run time.
 Links to the JBuilder Hand-
held Express tool, available for
free download, can be found at
http://www.borland.com/
jbuilder/hhe. Inprise/Borland
also encourages developers to
use the Palm OS Emulator
found on Palm, Inc.’s Web site
at http://www.palm.com.
 San Francisco, CA — Inprise/- ter 4.0 features is located at

Inprise/Borland Announces Support for
Enterprise Application
Borland announced the next ver-
sion of its Application Server
and AppCenter products. Inprise
Application Server 4.1 supports
the J2EE standard and combines
the benefits of EJB and CORBA.
AppCenter 4.0, now with added
support for EJB and CORBA,
enhances the management capa-
bilities of the application server
market and enables customers
to better handle the increased
demands of the Internet economy.
 AppCenter 4.0 provides enter-
prise development and operations
teams with software-based central-
ized tools to model, monitor, and
manage distributed applications
running on multiple hardware
and software platforms. AppCen-
ter 4.0 is capable of managing
the complete Enterprise JavaBeans
environment, including EJBs and
EJB servers and containers.
 A list of additional AppCen-
http://www.borland.com/
appcenter/feaben/.
 Inprise Application Server
4.1 includes enhanced EJB
transaction support with full
two-phase commit; a high-perfor-
mance transaction manager sup-
porting JDBC 2.0/XA; integration
of VisiBroker messaging service
with support for the Java Mes-
saging Service; and a new deploy-
ment wizard to simplify rolling
EJB applications out to multiple
containers. For more, visit http://
www.borland.com/appserver.
 VisiBroker 4.1 for Java is
the latest version of the object
request broker designed to facili-
tate the development and deploy-
ment of distributed applications
that are scalable, flexible, easily
maintained, and based on industry
standards. A list of features in Visi-
Broker for Java is located at http://
www.borland.com/visibroker.

Inprise/Borland Offers Visual Basic Developers Fast Path to Linux
Scotts Valley, CA — Inprise/-
Borland announced a solution
that gives Visual Basic develop-
ers worldwide an entry into the
Linux market by taking advan-
tage of the cross-platform capa-
bilities of Delphi. Inprise/-
Borland is launching a world-
wide awareness campaign
(including seminars, direct
mail, electronic and print
advertising, and special offers)
that will focus on showing
Visual Basic developers how
Delphi can be used to create
applications on Windows and
port those applications to
Linux. (For more information,
please visit http://www.
borland.com/vb/.)
 Evans Marketing, an indepen-
dent research firm providing
market research focused on the
software development commu-
nity, polled 468 Visual Basic
developers worldwide regard-
ing Linux development and
other topics. The results indi-
cated that 36 percent of Visual
Basic developers in North
America and 53 percent out-
side of North America are
interested in creating Linux
applications in 2000.

http://www.borland.com/jbuilder/hhe
http://www.borland.com/jbuilder/hhe
http://www.borland.com/jbuilder/hhe
http://www.borland.com/jbuilder/hhe
http://www.palm.com
http://www.borland.com/appcenter/feaben/
http://www.borland.com/appcenter/feaben/
http://www.borland.com/appserver
http://www.borland.com/appserver
http://www.borland.com/visibroker
http://www.borland.com/visibroker
http://www.borland.com/vb/
http://www.borland.com/vb/

6 September 2000 Delphi Informant Magazin

Dynamic Delphi
Word Automation / Delphi 4, 5 / Word 97, 2000

By Ron Gray
Word Control
Part I: Microsoft Word as an Automation Server

Many applications require word-processing capabilities. To provide basic functionality,
Delphi developers can, and do, customize the Memo or RichEdit control. But with

Microsoft Word available — as it usually is — it just makes good sense to exploit it for
your application’s word-processing needs.
Any Delphi application can offer Word’s advanced
editing and publishing capabilities with just a few
lines of code. Word exposes its properties and
methods just as any other Automation server or
Delphi component does. In fact, in Delphi 5,
Word is a component.

Of course, Word’s capabilities go far beyond the
basic word processing offered by the Memo and
RichEdit controls, and you can take advantage of
them all. Documents can contain complex tables,
graphics, and hyperlinks. Word’s drawing tools
can be used to create graphics and other special
effects. The powerful Visual Basic for Applications
(VBA) programming language allows for the cre-
ation of everything from macros for automating
simple tasks, to complete custom applications. The
Web-authoring tools provide an HTML editor.
Data can be merged into Word documents to auto-
mate letters, produce mail merges, or print enve-
lopes and labels. Word’s file converters give access
to a wide variety of file formats. You can even
use the spell checker to check the spelling of text
from an Edit or Memo control. Documents can be
linked to your application or embedded and stored
in BLOB fields as binary objects. All of this can be
done programmatically thanks to Automation.

This article is the first of a two-part series. It begins
with a review of Automation, the technology that
makes integration possible, and then looks at the
Word object model. Part II will continue examin-
ing the Delphi 5 Word components, look at OLE
(Object Linking and Embedding), and will offer
suggestions for completely integrating Word into
your Delphi applications.

A Brief Review of Automation
Automation (formerly OLE Automation) is a
mature Microsoft technology that enables one
application (the controller) to directly manipulate
e

the objects of another application (the server).
Automation is built on Microsoft’s Component
Object Model (COM), which defines a binary
interface standard for implementing objects inde-
pendent of any platform or programming lan-
guage. This means that a Delphi application can
set properties and invoke methods of objects in
Microsoft Word, even though Word is written in
another language.

As an example, consider a set of classes written in
Delphi that performs a specific function. The classes
can be wrapped in a component, but the component
can only be used in Delphi, because it must be com-
piled into the application. Even if placed in a DLL,
other languages still could not use it (at least not
easily), because they don’t support the same syntax.
COM allows you to wrap the classes into a compo-
nent that allows other applications to manipulate
it in an object-oriented fashion, regardless of the
language. Automation allows the component to be
physically wrapped in a DLL or EXE.

Automation makes inter-application communica-
tion a reality by allowing applications to imple-
ment component-oriented objects designed to
perform specific tasks — like a powerful word
processor. Just as object-orientation facilitates the
development of reusable objects, Automation lets
you build reusable components. Going one step
further, DCOM (Distributed Component Object
Model) removes machine boundaries, and allows
components to communicate openly, regardless of
their location on the network.

The two key elements of Automation are Automa-
tion servers and Automation controllers (also known
as clients). In general terms, an Automation server
is an application that can be controlled programmati-
cally by another application. Specifically, it is a COM
component that implements the IDispatch interface.

Dynamic Delphi

Figure 1: Registry keys for Microsoft Word.

Figure 2: A simple example of automating Word from Delphi.
An Automation server can be in-process or out-of-process with
respect to the client. An in-process Automation server is imple-
mented as a DLL, and runs in the same process space as the
client. An out-of-process Automation server is an EXE that runs
in its own address space. Word is an out-of-process Automation
server. Its content and functionality are available programmati-
cally through exposed objects. Everything you can do in Word
through the user interface can be done programmatically by
invoking methods of these objects. That’s quite a feat.

An Automation server must be registered in the Windows registry
(under HKEY_CLASSES_ROOT\CLSID\GUID) before it can be
used (see Figure 1). The entry for Word has four keys:
§ InprocHandler32 is used to specify a (possibly custom) handler.

Its default value is Ole32.dll.
§ LocalServer32 contains the full path to the local server, e.g.

“C:\PROGRA~1\MICROS~1\OFFICE\Winword.exe
/Automation.”

§ ProgID is an identifier associated with a CLSID. The format is
Vendor.Component.Version. Its value is “Word.Application.8” for
Word 97, or “Word.Application.9” for Word 2000.

§ VersionIndependentProgID is the human-readable name of the
application’s class, and remains constant over versions. For Word
it’s “Word.Application.”

Because the Automation server exposes its methods and proper-
ties, it can be manipulated programmatically by controller appli-
cations. An Automation controller is simply an application that
can access and control objects of an Automation server. The
language of the Automation controller must support the ability to
create an instance of the server (as an object) and call its methods.
A common example of a Delphi Automation controller is using
data from a table to generate a mail merge or catalog using Word.

Automation in Delphi
Delphi applications can be Automation servers, Automation control-
lers, or both.

Automation control is supported in two ways:
§ Run-time Automation handling
§ Compile-time Automation handling

Run-time Automation Handling
When the Delphi application has no compiled information about the
Automation server’s properties or methods, it must resolve type informa-
tion at run time (known as late binding). In other words, a Delphi
application can contain code that references methods of a Word object
without the compiler really knowing anything about the object. How is
this possible? Through the Variant, a data type derived from Visual Basic
that contains another type. The OleVariant is a COM-compatible type
used to manipulate Automation objects when their properties are not
known at compile time, i.e. calls to the object’s properties and methods
are ignored by the compiler and are late bound at run time.

Use the CreateOLEObject function to instantiate an Automation
object. It accepts a string that represents a program ID (described
previously), and returns a reference to the identifier of the pro-
gram ID’s IDispatch interface, which is used to communicate with
the object. The methods, properties, and variables of the Automa-
tion server are available through this reference.

The following example uses Word as an Automation server to create a
7 September 2000 Delphi Informant Magazine
document, insert some text, then print the document (see Figure 2):

var
 oWord: OLEVariant;
begin
 oWord := CreateOLEObject("word.application.8");
 oWord.Visible := True;
 oWord.Documents.Add;
 oWord.Selection.TypeText('Hey now!');
 oWord.ActiveDocument.PrintOut;
end;

The code begins by declaring a variable and creating a reference
to the Word object. As previously mentioned, the Word object is
declared as an OleVariant and is created using CreateOLEObject. The
program ID “word.application.8” is the class name for Word 97
(winword.exe). The program ID “word.application” is also registered
to return the same object. Some earlier examples of automating Word
use “word.basic” for the program ID to retrieve a WordBasic object.
Word Basic was replaced with VBA in Office 97.

The next statement in the example displays the Word application
by setting the object’s Visible property to True. This is important
because Word, like most Automation servers, is not visible by
default. This makes sense because the Automation server can be
used to perform tasks without the user knowing it. There are
times when displaying Word isn’t necessary, as in the previous
example; because the code simply prints a document, Word
doesn’t need to be visible. In fact, there are many examples when
Word can be used without the user even knowing it, such as
printing a label or spell-checking some text. The remaining lines
of code simply invoke methods of the

Application object, which is described in more detail later in the article.

Figure 3: The Import Type Library dialog box is used to
import the Word type library into Delphi 4. (This step is
unnecessary in Delphi 5.)

Dynamic Delphi
There are two drawbacks to using run-time Automation. First, the
compiler cannot perform error checking, because it doesn’t know the
methods or properties of the object. This leaves more room for errors
at run time. Second, there is overhead in determining type informa-
tion because it must be resolved through the IDispatch interface.
Fortunately, both issues can be resolved by using a pre-generated class
of the Automation server.

Compile-time Automation Handling
Most Automation servers provide type information about their exposed
objects, properties, and methods in the form of type libraries. These are
usually stand-alone files with a .tlb or .olb extension. Delphi can import
an Automation server’s type library and automatically generate classes
that include a dispatch interface wrapper. The main advantage to using
pre-generated classes is that type information is resolved at compile time
(i.e. it’s early-bound), which helps reduce the chance of run-time errors.

You don’t need to import the type library in Delphi 5 because it’s
already been done. To import the type library for Word in Delphi 4:
1) Choose Project | Import Type Library.
2) If you’re using Word 97, select Word (Version 8.0) from the

list. If it isn’t on the list, click the Add button to locate the
MSWord8.olb type file, located in C:\Program Files\Microsoft
Office\Office, or on the CD. The dialog box should look like the
one shown in Figure 3. If you’re using Word 2000, select Microsoft

Word 9.0 Object Library (Version 8.1) from the list.
3) Choose OK.

The Import Type Library tool reads the server’s published interface, and
creates a wrapper class of the Automation server. The import utility cre-
ates a unit named Word_TLB.pas (in the \Imports directory by default).
Include the unit in the uses clause, and write code to control the server
with a dual interface or a dispatch interface. The dual interface offers
advantages over the dispatch interface, so it’s the preferred method.

As mentioned earlier, Automation servers implement the IDispatch
interface. A dispatch interface, or dispinterface, uses the functions
of IDispatch (GetTypeInfoCount, GetTypeInfo, GetIDsOfNames, and
Invoke) to indirectly call functions of the Automation server. Before
calling a function, the controller application must call GetIDsOfNames
to get the ID of the function, then use the Invoke function to call it.
A dual interface is a COM interface that inherits from IDispatch, so
although functions are still available through the dispatch interface,
they are also available through vtable binding, a way of storing point-
ers to functions for fast, nearly direct, access for calling them.

Once Word_TLB.pas has been added to the uses clause, you can
create and initialize an Application object using the _Application dual
interface and CoClass client proxy class, CoApplication_, as follows:

var
 oWord: _Application;
begin
 oWord := CoApplication_.Create;
 oWord.Visible := True;
 oWord.Documents.Add(EmptyParam, EmptyParam);
 oWord.Selection.TypeText('Hey now!');
 oWord.ActiveDocument.PrintOut(EmptyParam,
 EmptyParam, EmptyParam, EmptyParam, EmptyParam,
 EmptyParam, EmptyParam, EmptyParam, EmptyParam,
 EmptyParam, EmptyParam, EmptyParam,EmptyParam,
 EmptyParam);
end;
8 September 2000 Delphi Informant Magazine
Notice that the oWord variable is now declared as _Application rather
than OleVariant. The interface is initialized with the CoClass client
proxy class, CoApplication_. A CoClass is a class that implements one
or more interfaces — in this case, the _Application interface defined
in Word. CoClass classes are generated automatically when the type
library is imported. The rest of the code calls the same methods as
in the example of run-time Automation handling, except that each
method must now be called with the correct parameters. Use the
EmptyParam variable to indicate that a particular parameter isn’t used.

As mentioned earlier, controlling an Automation server with a dual
interface offers advantages over run-time Automation handling.
Besides reducing the overhead of type checking, it also enables
the Code Insight features, such as Code Completion and Code
Parameters. More importantly, syntax checking is performed at
compile time, which helps reduce errors. However, this approach is
still relatively cumbersome and low-level. For example, to receive
events from the Word object requires writing an event sink, an
interface through which the Automation server can communicate
with the client.

Delphi 4 offers wrapper classes to the Word object in Word97.pas,
located in the Demos directory in \ActiveX\OleAuto\Word8.
Although the file is for demo purposes, the classes encapsulate some
of the complexity, including receiving events.

TWordApplication
Delphi 5 further simplifies Word Automation by wrapping Office
in a collection of components that are available right off the
Servers page of the Component palette. Of course, it still uses
compile-time Automation handling as described previously, but
the imported type library is completely encapsulated in Delphi
components. These components will be described in detail in next
month’s article.

General Considerations
Automating Word presents a few interesting caveats. First, remember
that Word is a separate application that can be controlled by
the user, other applications, or both. Word might already be running
when a Delphi application needs to use it. In this case, should the
application use the existing object, or run another instance of Word?

9 September 2000 Delphi Informant Magazine

Obviously, memory con- action with the user interface. The object model is easier to follow

Figure 4: A small portion of the
Microsoft Word object model.

Application

AddIns

Assistant

AutoCaptions

...

Documents

Bookmarks

DocumentProperties

...

FileConverters

...

Figure 5: Steps to select text in a Word document.

User Interface Programmatically

Start the Word application. Get a reference to the Word Application object.
Open a document. Use the Documents collection to open a document.
Select a specific document. Get a reference to a specific Document object.
Select a range of words from Get a reference to a Word Range object.
the document.

Dynamic Delphi
straints limit the number of
instances that can be run-
ning simultaneously. But
sometimes creating a new
instance of Word is
required to get “exclusive”
access, so you don’t need to
worry about user interven-
tion.

Second, when Word is vis-
 macros, quit Word at any
ible, the user can switch documents, run

time, and generally cause havoc if your Delphi code isn’t robust
enough to handle these eventualities. Keep in mind that you have
complete control over the menus and toolbars to limit or enhance
a user’s access.

Third, be careful of dialog boxes that Word displays as a result of
an action or set of actions. For example, the previous sample code
creates a document, then inserts some text. If another line is added
to quit Word, it might not be executed because Word displays a
dialog box for saving the new document. If Word isn’t visible, the
application could appear hung when it’s actually waiting for input
from the user. If Word is visible, the user might not answer the
dialog box the way your application expects. One possible solution
is to minimize or eliminate dialog boxes. For example, the previous
code should be modified to either save or close the new document
before exiting Word. Another way is to manage the dialog boxes
directly (with the Dialogs collection object) to preset options and
check return values.

The Word Object Model
An object hierarchy or object model describes how objects of an
application relate to each other, along with how the application’s
functionality is divided among them. As developers, we’re familiar
with objects and how to use them, but when they relate to each other,
it helps to see them visually in a hierarchical diagram, such as the
one shown in Figure 4. The Word object model is vast — nearly 200
objects with over one thousand properties and methods. Objects are
often accessible only through other objects in a parent/child relation-
ship. Child objects can have child objects of their own. For example,
text in a Word document is four levels deep.

Before working with Word, it’s important to understand how Word’s
content and functionality are defined in the object model. The object
model is documented in the Help file vbawrd8.hlp, which is on
the Microsoft Office CD, but is not installed by default. To install
it, run the Microsoft Office Setup program, and select Add/Remove

components. Select Help for Visual Basic under the Help options.

The overall structure of the object model resembles the structure of
the user interface. This means that performing an action program-
matically usually requires the same steps to perform the same
if you keep this in mind. For example, the top-level object —
the Application object — is the Word application itself. All Word
functionality is under this object. The Document object is a child of
the Application object. It is comprised of objects that make up the
content and functionality of the document. The table in Figure 5
lists the steps to select text in a document with the user interface,
and how to do the same steps programmatically.

The Word object model also uses the Collection object. A Collection
is simply an object that contains a set of related objects. Microsoft
Office has a naming convention for dealing with such objects: The
name of the Collection object is usually the plural of the name of
the objects it contains. For example, the Documents object is a collec-
tion containing Document objects. Consider the user interface. Word
can contain multiple documents. Each document is a Document
object, and all the Document objects are contained in a Documents
collection. Just as a document can only be accessed from Word, a
Document object is accessed from the Documents object.

Most collections provide a Count property and Item method to
navigate and select specific objects. This example uses both to loop
though all open documents and set the first word:

Application.Documents.Item(1).Words.Item(1).Text = "Hello."

Conclusion
This article discussed controlling Microsoft Word using run-time
and compile-time Automation in Delphi. It also presented the
Word object model and explained some of its conventions. The
included sample source code will run in Delphi 4 and 5, and with
Word 97 or 2000.

Next month, this series will continue by examining the Word compo-
nents in Delphi 5, and how they simplify the Automation process.
It will also look at how to link or embed documents into a Delphi
application, and save them to tables. ∆

The sample application referenced in this article is available on the
Delphi Informant Magazine Complete Works CD located in INFORM\
00\SEP\DI200009RG.

Ron Gray is a software developer specializing in business database applications.
He has written numerous articles using different languages and is the author of
LookUp Manager, a collection of components for visually managing lookup codes
and abbreviations in applications. He can be reached at rgray@compuserve.com.

10 September 2000 Delphi Informant Magazine

Distributed Delphi
MIDAS / COM / Delphi 5

By Bill Todd

The Gold Standard, MIDAS & COM
Part II: Calling Servers and Deployment

This month, we’ll look at two other ways to allow
the COM server to call methods of the COM
client. To avoid confusion, I will refer to the appli-
cation’s main module and COM client as the cus-
tomer module, and the application’s COM server
module as the orders module (both are available for
download; see end of article for details).

The first technique is to add an Automation
object to the customer module, so it can also
function as a COM server with the orders
module acting as its client. The second method
will add a callback interface to the orders
module. The customer module will include an
object that implements the callback interface.
When the customer module opens the orders
module via COM, it will also create an instance
of the callback interface and pass it to the orders
module. The orders module can use this inter-
face reference to call methods implemented in
the customer module.

Everyone’s a Server and Everyone’s a Client
At first, it appears that the easiest way to allow two
applications to communicate using COM — and
have the ability to initiate an event in the other
application — is to make each application a COM
client and a COM server. And this technique works
as long as you’re careful. We’ll start with last month’s
customer and orders modules as they stood before
any events were added to the orders module’s dis-
patch interface, and before the orders module’s type
library was imported, and the wrapper component
was added to the customer module.

The first step is to open the Object Repository,
go to the ActiveX page, and start the Automation
Object wizard. Add an Automation object named
CustServer, and then use the Type Library editor
to add the FindCustomer and CloseOrders methods
to the ICustServer interface (see Figure 1). Add a
single parameter named CustNo of type long to the
FindCustomer method.

Next, add the code for the FindCustomer and
CloseOrders methods:

procedure TCustServer.CloseOrders;
begin
 OrderServer := nil;
end;

procedure TCustServer.FindCustomer
 (CustNo: Integer);
begin
 CustomerDm.FindByCustNo(CustNo);
 CustomerForm.Show;
end;

The next step is to switch to the orders module
and add the code that calls back to the customer

Figure 1: The ICustServer interface as it appears in Delphi’s
Type Library editor.

Last month’s article demonstrated building an application consisting of multiple mod-
ules that share a common database connection using MIDAS. Communication

between the modules was implemented via COM, with the application’s main module
acting as a COM client, and the other module acting as a COM server. Communication
from the server to the client was provided by events added to the server’s dispatch
interface and imported into the client using the Type Library Import wizard.

11 September 2000 Delphi Informant Magazine

module, starting with the OnDestroy event handler of the order
form (see Figure 2).

When the user closes the order form, the order form has to notify
the customer module, so it can close its Automation connection to
the orders module. First, the code in Figure 2 frees the orders data
module, OrderDm. Then it opens an Automation connection to the
customer module by calling the CoCustServer.Create method added
by the Automation Object wizard. Next the code calls the customer
module’s CloseOrders method and immediately closes the Automation
connection. Notice also that the call to CloseOrders is protected by a
try..finally block to ensure the Automation connection is closed.

This illustrates the one disadvantage of this technique. The orders
module can only connect to the customer module for very brief
periods of time, because a user could try to close the customer form at
any time. If a user does try to close the customer form when another
module has an open Automation connection to it, the warning mes-
sage in Figure 3 will appear.

As you can see, this dialog box warns the user not to close the
application while it has open COM connections, implying dire con-
sequences if the application is closed. The only way to ensure the user
never sees this warning is to make sure an Automation connection to
the customer module persists for a very short period of time and only
while the user is interacting with some part of the application other
than the customer form. The need to open and close the Automation
connection, and use a try..finally block for each call, also increases the
amount of code you must write.

The final step is to add the following code to the OnClick event
handler of the View | Customer menu choice. This code is identical to
that in Figure 2, except it calls the FindCustomer method and passes
the customer number from the current order record as a parameter:

procedure TOrderForm.Customer1Click(Sender: TObject);
begin
 CustServer := CoCustServer.Create;
 try
 CustServer.FindCustomer(
 OrderDm.OrdersCdsCustNo.AsInteger);
 f inally
 CustServer := nil
 end; // try
end;

Using a Callback Interface
Allowing the orders module to use a callback interface to call meth-
ods in the customer module is a straightforward concept consisting
of the following steps:
1) Add an interface to the orders module to define the methods to

be called in the customer module.
2) Add the methods to be implemented in the customer module

to this interface.
3) Add a method to the orders module’s interface that receives and

saves a reference to the callback interface.
4) Add the orders module’s type library interface unit to the cus-

tomer module.
5) Declare a type in the customer module that implements this new

interface.
6) Create an instance of this type, and pass the interface reference

to the orders module.

Figure 4 shows the Type Library editor after adding the IOrder-
ServerCallback interface, and its OnCloseOrders and OnFindCustomer
methods. Figure 4 also shows the Connect and Disconnect methods
that were added to the IOrderServer interface. Note that the Connect
method takes a single parameter of type IOrderServerCallback.

Here is the code for the Connect and Disconnect methods:

procedure TOrderServer.Connect(
 const Callback: IOrderServerCallback);
begin
 ClientCallback := Callback;
end;

procedure TOrderServer.Disconnect;
begin
 ClientCallback := nil;
end;

The ClientCallback variable used by the Connect and Disconnect meth-
ods is declared as a global variable of type IOrderServerCallback in
the interface section of the OrderServer Automation object’s unit.
The Connect method receives a reference to the InOrderServerCallback
interface, and saves this value in the ClientCallback variable. This
interface reference is used by the methods in Figure 5 to call the
OnCloseOrders and OnFindCustomer methods.

Now let’s look at what is required on the client side to implement
the callback interface. The first step is to add the orders module’s
type library interface unit, DemoOrders_TLB, to the project. In the

Distributed Delphi

procedure TOrderForm.FormDestroy(Sender: TObject);
begin
 { Free the Orders data module. }
 OrderDm.Free;
 { Tell the customer form to close its connection
 to the orders form. }
 CustServer := CoCustServer.Create;
 try
 CustServer.CloseOrders;
 f inally
 CustServer := nil;
 end; // try
end;

Figure 2: The orders form’s OnDestroy event handler.

Figure 3: The open COM connections warning dialog box.
Figure 4: The orders module’s type library with the callback
interface.

12 September 2000 Delphi Informant Magazine

customer form’s unit, the declaration for the TOrderEventHandler
class is added to the type declaration section just before the declara-
tion for the TCustomerForm type:

type
 TOrderEventHandler = class(TAutoIntfObject,
 IOrderServerCallback)
 procedure OnCloseOrders; safecall;
 procedure OnFindCustomer(CustNo: Integer); safecall;
 end;

This class implements the IOrderServerCallback interface and its
methods. TOrderEventHandler descends from TAutoIntfObject, which
has no class factory so it can only be instantiated by calling its
constructor. This makes it private to this application since it cannot
be instantiated through COM.

The real work on the client side is performed by the OpenOrderServer
method of the customer form (see Figure 6). This method is called

whenever the customer module needs to open the orders module via
Automation. It begins by calling the LoadRegTypeLib Windows API
function to load the OrderServer type library and save a reference to
the type library in the TypeLib variable. Next, this method creates
an instance of the TOrderEventHandler class, declared in the previous
code snippet, and saves the reference in the OrderEvent handler, a
private member variable of the TCustomerForm class. The third step
is to open the Automation connection to the orders module, and
save the interface reference in the OrderServer variable. OrderServer
is a public member of the TCustomerForm class. Finally, the Connect
method of the server is called and the OrderEventHandler reference is
passed to it as a parameter.

The following code shows the CloseOrderServer method, which closes
the Automation connection to the orders module by setting OrderServer
to nil. Then it destroys the instance of TOrderEventHandler by setting
OrderEvent handler to nil:

procedure TCustomerForm.CloseOrderServer;
begin
 OrderServer := nil;
 OrderEventHandler := nil;
end;

CloseOrderServer is called from the OnCloseOrders method of
TOrderEventHandler (see Figure 7). It also shows the code for the
OnFindCustomer method.

Which Method Is Better?
You have now seen three different techniques for enabling an Automa-
tion server to call back to its client. Using the event interface added
by the Automation Object Wizard and the wrapper component gener-
ated by the Type Library Import wizard is certainly easy. The only
disadvantage to this method is that considerable effort is required if
you need to add additional methods or events after you have generated
the wrapper component. This is because you must recreate the wrap-
per component. You also have to install the wrapper component on
the palette to work with the application at design time.

The second approach, making both applications an Automation
client and server, is very easy. However, you must limit the connec-
tion to the main application to a very brief interval, so a user will
not try to close the program while the connection is open and get the
open COM connection warning dialog box shown in Figure 3.

The last method, using a callback interface, requires a bit more code
in the client, but is very easy to use and modify if you need to add
additional callback events at any time. It doesn’t require any special
components on the palette, and adding additional callback events is
as simple as adding the methods to the type library, writing the code
for each method, and recompiling your application.

Deploying an Application
Because the architecture for modular applications described in
these articles uses two technologies, MIDAS and COM, the rules
for deploying these applications is a combination of the rules
for deploying MIDAS applications and COM applications. Deploy-
ing a MIDAS application requires that you install and register
MIDAS.DLL on the machine running the MIDAS client, and install
and register both MIDAS.DLL and STDVCL50.DLL on the com-
puter running the MIDAS server. You must also register the MIDAS
server with Windows. Any other COM servers in your application
must also be registered with Windows.

procedure TOrderForm.FormClose(Sender: TObject;
 var Action: TCloseAction);
begin
 { Free the Orders form when it closes. }
 Action := caFree;
 ClientCallback.OnCloseOrders;
end;

procedure TOrderForm.Customer1Click(Sender: TObject);
begin
 ClientCallback.OnFindCustomer(
 OrderDm.OrdersCdsCustNo.AsInteger);
end;

Figure 5: Calling methods through the callback interface.

procedure TCustomerForm.OpenOrderServer;
var
 TypeLib: ITypeLib;
begin
 if not Assigned(OrderServer) then begin
 { Load the orders module's type library. }
 OleCheck(LoadRegTypeLib(
 LIBID_DemoOrders, 1, 0, 0, TypeLib));
 { Create an instance of the TOrderEventHandler class. }
 OrderEventHandler := TOrderEventHandler.Create(
 TypeLib, IOrderServerCallback);
 { Open the automation server. }
 OrderServer := CoOrderServer.Create;
 { Call the Connect method of the OrderServer Automation
 object and pass the IOrderServerCallback interface
 reference to it. }
 OrderServer.Connect(OrderEventHandler);
 end; // if
end;

Figure 6: The OpenOrderServer method.

procedure TOrderEventHandler.OnCloseOrders;
begin
 CustomerForm.CloseOrderServer;
end;

procedure TOrderEventHandler.OnFindCustomer(
 CustNo: Integer);
begin
 CustomerDm.FindByCustNo(CustNo);
 CustomerForm.Show;
end;

Figure 7: The OnCloseOrders and OnFindCustomer methods of
TOrderEventHandler.

Distributed Delphi

13 September 2000 Delphi Informant Magazine

Commercial installation programs, including InstallShield Express,
will automatically register COM servers for you. If the server is an
EXE, you can also register it by running it once, or by running it with
the /REGSERVER command-line switch. To register COM servers
from your own application, see the TRegSvr sample application that
comes with Delphi.

Conclusion
The marriage of MIDAS and COM provides an architecture for large
applications that support multiple independent modules, rather than
a single EXE with all of the modules sharing a common database
connection through MIDAS. The benefit? This makes team develop-
ment easier by allowing different programmers to work on different
modules. It makes customization and updates easier by allowing you
to modify or update a single module. It also allows you to build
modules that can be shared among multiple applications without
change. And who wouldn’t want life to be easier? ∆

The files accompanying this article are available on the Delphi
Informant Magazine Complete Works CD located in INFORM\00\
SEP\DI200009BT.

Distributed Delphi

Bill Todd is president of The Database Group, Inc., a database consulting and
development firm based near Phoenix. He is co-author of four database program-
ming books, including Delphi: A Developer’s Guide. He is a Contributing Editor
to Delphi Informant Magazine, and is a frequent speaker at Borland Developer
Conferences in the US and Europe. Bill is also a member of Team Borland and
a nationally known trainer; he has taught Delphi programming classes across the
country and overseas. He can be reached at bill@dbginc.com.

14 September 2000 Delphi Informant Magazin

OP Tech
RTTI / Delphi 5 / Persistence / Databases

By Keith Wood
Database Persistent Objects
Part I: Automatic Storage for Objects

Object Pascal provides full support for object-oriented programming. We can create
new classes to extend any of the existing ones, adding whatever functionality

we desire. Interfaces provide a way to enhance abilities outside the constraints of the
class hierarchy. However, the objects we instantiate from these classes only exist for the
duration of the application.
Delphi allows objects descended from TComponent
to be written out to a stream to preserve their
state. This is the basis of the form files (.dfm) that
accompany many units. However, the content of
these files is not easily manipulated outside of a
Delphi program. It would be great if objects could
be saved to a standard format that would allow for
processing and management by other applications.

In this article, we explore how classes can be set up
to automatically store themselves to, and retrieve
themselves from, a standard relational database
with minimal effort on our part. All we need to
do is derive our new component from a particular
base class, and publish the properties we want to
be stored. We achieve this through the magic of
Delphi’s Run-time Type Information (RTTI).

Objects to Tables
Objects and relational databases have a natural
symmetry. The class declaration defines what data
fields are available for use in instances of that class,
and acts as a template from which we can con-
struct new objects. Similarly, the definition of a
table in a relational database lays out which col-
umns exist, along with their types, and allows us
to insert records following this pattern. Objects
that we create from a class definition correspond to
individual rows inserted into a database table, and
properties of a class map onto columns in the table.
In a normal relational database, there is no provi-
sion for attaching behavior (methods) to a row, but
— hey! — this is why we’re using Delphi!

One of the benefits of object orientation is the
ability to inherit attributes from a parent class. This
inheritance can be ignored, treating each class as
a single entity with the combined properties of all
the classes, and mapped onto a single table. Alter-
nately, it can be modeled in a relational database
e

by having tables for each class in the hierarchy. At
each level, we only have the properties that were
introduced at that level. The tables are linked in a
one-to-one relationship by some unique key.

In an application, classes usually interact to provide
the desired functionality. These relationships can
be stored as foreign keys in the relational database,
with the object referred to being saved in its own
table. In this way we can use the standard join
abilities of the database to reconstruct the linkages.
One-to-many relationships would be modeled just
by storing the reference from the child back to
the parent. Many-to-many relationships require a
linking table in a relational database, reducing
the arrangement to two one-to-many connections.
Duplicating this in a class hierarchy would ease the
mapping, while decreasing the coupling between
the two original classes.

Although database tables generally require a pri-
mary key, objects need no such identifier. Typically,
they’re uniquely referenced via a pointer held in a
variable. Due to the mapping we’re attempting to
implement, we’ll require each class to have at least
one field that is designated as the primary identifier
for each object. This is used to save and retrieve
individual records from the database.

RTTI
Delphi keeps track of the objects it manipulates,
and makes a lot of that information available to
us through the use of RTTI. From this we can
determine the names and types of any published
properties of a class (among other things), which
we use to automatically enable the database persis-
tence mechanism.

For RTTI to be available, the class of interest must
be derived from TPersistent. RTTI can then provide

OP Tech
details about all the published properties of such classes. Recall that
published properties are the same as public ones in that they can be
accessed from anywhere the parent class can be seen, but that they also
appear in the Object Inspector (for component-based classes). Delphi
itself uses RTTI to achieve this. Similarly, we can use RTTI to inspect
an arbitrary class and access its published property definitions. We derive
our base class for database persistence, TDBPersistent (found in the
DBPersist unit), directly from TPersistent. The TypInfo unit needs to be
included in the uses clause, because it provides the access to RTTI.

Because the list of properties is related to the class itself, rather than
any particular instance of it, we preprocess the class to extract all the
necessary information and store it in an external variable, allowing
faster access to it later. As Object Pascal has no class initialization
mechanism, we must invoke this process in some other manner. The
obvious place is in the initialization section of a unit. This guarantees
that the properties are available as soon as the normal code starts
executing. The RegisterDBPersistentClass procedure shown in Listing
One (beginning on page 18) is for exactly this purpose: taking the
class as its parameter.

First up, we check to see whether this class has already been regis-
tered. If so, we immediately exit because we only need to extract
the information once. Otherwise, we register the class with Delphi’s
streaming system. This allows us to find the class later by name,
and to construct a new instance of it on demand. Next, we create a
specialized list and attach it to a global property list under the class’
name. Note that “global” here means that the object exists externally
to any instances of classes, but it is only accessible within this unit
because we declare it in the implementation section. We need to use
an external list because we only want one instance of it, regardless of
the number of persistent classes and their objects.

To enable the class hierarchy to be reconstructed for use in creating
a matching table structure, we must determine which properties
were introduced in which parent classes. We cycle through the class
information using ClassParent to move up the hierarchy, stopping
when we reach TDBPersistent. At each level we call GetPropList
(from the TypInfo unit) with the tkProperties parameter to retrieve
the number of published properties declared there. Passing nil as
the final parameter to this function simply returns the number of
entries in the property list, rather than the list itself. Remember
that published properties can’t be un-published later. So once
they’re declared, they’re available in all descendants. These counts
are stored in a list for later use.

Next, we reserve enough space for the RTTI for the properties of this
class, and load it with the details — again, using GetPropList. As we
step through each entry in the list, we create a corresponding entry in
the global property list. We map Pascal data types into standardized
SQL types, as listed in TDBPropType:

{ Types supported in the database. }
TDBPropType = (ptSmallInt, ptInteger, ptEnumeration, ptSet,
 ptFloat, ptDate, ptTime, ptDateTime, ptChar,
 ptString, ptClass);

Where different types map into the same basic data type, we use
the actual type name for further clarification, as can be seen with
TDateTime, which is held as a floating point value. For string data
we also need to determine the maximum length of the string. This
is done by retrieving the type data information and extracting the
desired value.
15 September 2000 Delphi Informant Magazine
Note that we can handle Pascal sets and enumerated types and save
these to the database. This is possible because Pascal stores them
internally as integers. Similarly, we can store class references (also
stored as integers, but with a different meaning), provided that the
class also derives from TDBPersistent. We need this last restriction
because we can’t store the class references directly. They’re actual
memory addresses that would be meaningless when reloaded, and
must instead store those properties defined as primary keys.

Primary key fields are very important, because they uniquely identify
each object/record. To denote which properties are to be used as
the primary key, we need some sort of flag that can be passed
through RTTI, because this is all we have access to when building
up the property list. There is a stored flag that indicates whether that
property is retained, but it’s not a good idea to subvert this for a
different use. So we’re left with the property name or the type name.

Because we’ll be working with the property names throughout our
code, we don’t want to fiddle with these. Hence the indicator for
a primary key is passed through the type name and consists of the
first three characters, “TPK.” This is pre-pended to the name of the
underlying type, allowing that to be retrieved as necessary. So an
integer property that is also the primary key would have a type of
TPKInteger. Declarations for the primary key versions of the basic
types are available in the DBPersist unit.

Finally, we look back through the list of parent classes and their proper-
ties to determine where each property was introduced. We do this by
comparing them with the NameIndex value from RTTI. The resulting
class name is transformed into a table name, and is stored in the
property list with the other details we just extracted. For convenience, a
list of the names of the primary key fields is also constructed as we go,
and is saved as the final entry in the global property list.

Accessing all this information from each class is achieved through a
number of class methods that select the appropriate property list from
the global list, and then map into it directly. A class method is one
that belongs to the class itself, rather than any particular instance of
that class. This means it can be accessed through the class, without
having to create an object. However, it also means that we cannot
access any properties or methods specific to an instance, thus the need
for the external property list. Having the keyword class in front of
their declarations identifies these methods.

Database Mapping
Now that we have a list of the properties of our persistent class, we
need to be able to map those into fields within a database table,
and to submit actions to the database to save and retrieve them. We
use SQL to manipulate the database, because this is a widely used
standard allowing access to a large variety of relational databases.

Although we’re using relational databases and accessing them through
SQL, there are enough differences between the various dialects that
we need to cater for specialized mappings for each one. To achieve
this, we create a database manager, TDBManager, which handles all
the interactions with the database. It’s passed a TDatabase object to
use for its communications, and creates a TQuery object internally to
submit the actual requests.

To generate the required SQL code, it needs a reference to a mapper
as specified by the IDBMapper interface. This serves to isolate the
manager from the idiosyncrasies of each database. A standard imple-
mentation of this interface is provided by TStandardDBMapper, which

OP Tech
specifies the most common version of SQL for each type of request.
This is then extended by specialized subclasses for each database.
Implementations for Oracle, InterBase, and Paradox are included.

The actions we need to be able to perform for each object are: to
save it to storage, read it back, alter it in storage, and remove it.
These correspond to the standard INSERT, SELECT, UPDATE, and
DELETE actions provided by SQL. For added convenience, we also
implement methods that allow us to automatically create the table(s)
necessary to store instances of a class, and to remove those tables
when they’re no longer required.

To be able to create an appropriate table for storing an object,
we need to map the Pascal data types into those provided by the
underlying database. This area is the one with the greatest diversity
between databases (see Figure 1). Recall that we’ve already classified
the Pascal types as standardized SQL types in the property lists.
From here we need to map those standard types onto the actual
types. The GetType method from the IDBMapper interface provides
this transformation.

The names of the tables are taken directly from the class names
(minus the initial “T”). Similarly, the names of the fields are taken
directly from the property names. Following normal Pascal naming
conventions creates names that are accepted by most databases. The
only real limitation is the maximum length of a name, which — of
course — varies from one database to another and is encapsulated in
the GetMaxNameLength method.

Whenever we encounter a property that is a reference to another
TDBPersistent object, we need to do some extra work. Because we
can’t store the class reference directly, we need to include a foreign
key reference instead. We do this by locating the property list for the
other class, and creating fields in the table corresponding to the other’s
primary key fields. Naming these fields requires combining the name
of the property in the current class with the primary key property
name(s) from the other. This is necessary because there may be multiple
references to that foreign class in the current one, and/or the foreign
property names may conflict with those in the current one.

As well as creating the table, we need to create its primary key.
In standard SQL, this is specified as part of the table creation as
a constraint (although provisions are made for constructing the
index separately through the mapper interface). Furthermore, the
fields that make up the primary key often need to be treated
differently from normal fields. In particular, it’s usually necessary
to make these fields not nullable.
16 September 2000 Delphi Informant Magazine

Figure 1: Mapping Pascal types to SQL types. The asterisks denote
class references replaced by foreign key fields.

TDBPropType Paradox InterBase Oracle

ptChar CHARACTER(1) CHARACTER CHAR
ptClass * * *
ptDate DATE DATE DATE
ptDateTime TIMESTAMP DATE DATE
ptEnumeration INTEGER INTEGER NUMBER
ptFloat NUMERIC NUMERIC NUMBER
ptInteger INTEGER INTEGER NUMBER
ptSet INTEGER INTEGER NUMBER
ptSmallInt SMALLINT SMALLINT NUMBER
ptString VARCHAR VARCHAR VARCHAR2
ptTime TIME DATE DATE
A further complication is introduced when we follow a class hierarchy
by mapping inherited classes into separate tables. In this case, we
generate a number of table creation statements, one for each class
in the hierarchy. For ease of processing, all the create statements are
placed into a string list, and are then executed in turn. If there is no
hierarchy, or we’re not duplicating one in the database, then there will
only be a single statement in the first list entry. The UseTableHierarchy
variable in the DBPersist unit allows us to control the hierarchy
behavior. It’s set to True by default, causing any class hierarchy to be
mapped into separate tables.

To create the table(s), all that’s necessary is to instantiate an object of
the appropriate type, and call its CreateTable method. We must have
an object, because we need the link through to the database provided
by the DBManager property. Removing the table(s) is just as easy, by
calling the DeleteTable method of the object.

There and Back
The main interactions with the database are through saving and
retrieving individual objects. Through the mapping interface, we can
construct INSERT, SELECT, UPDATE, and DELETE statements.

INSERTs, UPDATEs, and DELETEs generate lists of statements when
a class hierarchy is being used, one for each table. DELETEs are the
simplest, needing only the table name(s) and a WHERE clause con-
structed from the primary key values. INSERTs build two lists for each
table — one for the field names, and one for the values — before
combining them into the complete statement. References to other classes
are translated into a collection of fields corresponding to the primary
key of that other class. If a class reference is nil, then nothing is inserted
(defaulting to null). In the UPDATE statements we need to include all
the fields, even unassigned class references. Setting the latter to null, when
appropriate, is necessary to ensure the integrity of the database.

Obtaining the value of a property is achieved by using the property
name, and one of the GetXXXProp functions from the TypInfo unit
(as appropriate for the particular property type). The values are
then converted into strings through the ValueAsString property of
TDBPersistent, and can then be incorporated into a SQL statement.

Retrieving the values for an object is a little different from retrieving
the values from the other actions. Although we could work through a
class hierarchy and retrieve details from each table separately, there is
no need to do this. Within a single SELECT statement, we can link
all the appropriate tables, and return the composite record in one try.
This reduces the traffic between the program and the database. We
step through all the properties for a class, noting which table (class)
they came from, and generate the corresponding SQL for them.

Using table aliases, we can reduce the coding by labeling tables as
“Tn,” with n ranging from zero through whatever is needed.

When the fields have been returned from the database, we
extract them by name and map them back into the object, as
shown in Listing Two (on page 19). Using the ValueAsString
property allows us to set each one as a string value, making the
final conversion internally, based on its actual type. Again, we
rely heavily on RTTI. After determining the property type from
the list for this class, we convert from the string value, and call
one of the SetXXXProp procedures to transfer that value to the
named property.

Another complication arises when we encounter a class reference
property. Remember that we’re storing the primary key from the

OP Tech
other class as a foreign key in this one. So, to restore the original link,
we need to create an object of the appropriate type, set its primary
key values from the foreign key fields retrieved, and then load it from
the database — without prior knowledge of what the class is or what
properties it contains.

Again it’s RTTI to the rescue, along with some other abilities of
the TPersistent class. First, we obtain the foreign key values from the
current record by stepping through the primary key properties of the
other class. These are concatenated into a single string for passing
to the ValueAsString property. Here the property is recognized as a
class reference, and passed to an internal function: CreatePersist. The
attached class is located from its name (hence the need to register
it with Delphi’s streaming system earlier on), and a new object is
created with the NewInstance method.

We then step through the properties for that class, and — for the
primary key fields — transfer the values returned from the database
into the appropriate fields. Finally, we can ask our new object to
load itself from the database. This causes a big problem, because
we’re already in the middle of one query and are attempting to
start another, whereas the database manager only uses a single
17 September 2000 Delphi Informant Magazine

Figure 2: Demonstration of persistent objects.

Figure 3: The objects in the database.
query object. So we ask the manager to save the current query
state, perform the new one, and then restore the original. It does
this by placing the current one into a list and instantiating a new
TQuery object.

When the object has been loaded, a reference to it is passed back from
the CreatePersist function, and is set as the property value. Obviously
this process isn’t perfect. If we have several references to the same object,
we end up with multiple copies of it under this scheme. We need some
way of locating a single master copy of each object and transferring all
references to it there. This is an area for future expansion.

Demonstration
To show how all this works in practice, look at the project that
accompanies this article (see end of article for download details). In
the DBPDemo2 unit shown in Listing Three (beginning on page 19),
three database persistent classes are declared: TContact, TDebtor, and
TAddress. These include properties as examples of most of the avail-
able Pascal types, including references to address objects from con-
tacts. The debtor class illustrates how class inheritance works in
conjunction with database persistence.

Database access is established through one of the TDatabase components
on the main form, DBPDemo1. These are set up for the InterBase
IBLocal (dbsIB), or Paradox DBDemos (dbsPdx) databases. The uncom-
mented line from the FormCreate method determines which one is used:

{ Create the database manager. }
dbm := TDBManager.Create(dbsPdx); { Paradox database. }
{ dbm := TDBManager.Create(dbsIB); { InterBase database. }

The database manager automatically instantiates the correct mapper
for the supplied database. Feel free to use whichever is appropriate, or
to substitute an Oracle database.

On start up, the main form creates the necessary database tables
before displaying two TDebtor objects, along with their addresses (see
Figure 2). The tables are dropped when the application terminates.
Normally the tables would be created and retained to provide the
necessary persistence.

The objects can be saved to the database (a good first step), and then
viewed through a tool such as Database Desktop (see Figure 3). Changes
made externally can be reloaded into the program. Note how the non-
SQL types are stored: as sets, enumerated types, and class references.

Conclusion
Creating objects that model the real world make it easier to program
interactions with and between them. Although Delphi provides for
persistence of objects, this is only available in a binary format, and
can’t be easily used outside a Delphi program. By mapping an object
into one or more tables in a relational database, we can achieve
the desired result of persistence, along with a format that can be
processed through other applications using standard SQL.

The classes just described allow an arbitrary class to be automatically
saved to a relational database. Simply derive from TDBPersistent and
publish its properties. The process is insulated from the specifics of
a particular database through the database manager class and the
mapper interface. Although the scheme we just described isn’t ready
for production work — as it has several outstanding issues — it does
illustrate how the mapping can be done, and provides a solid base
on which to work.

OP Tech
Although the persistence scheme described here has been designed to
be as easy to use as possible, we can provide further assistance through
a wizard that generates the necessary class unit. This is the subject of
next month’s article. ∆

This article is based on ideas presented by Claude Duguay in
his article “Object/Relational Database Mapping” from the January
2000 issue of JavaPro.

The files referenced in this article are available on the Delphi
Informant Magazine Complete Works CD located in INFORM\00\
SEP\DI200009KW.

Keith Wood is an analyst/programmer with CCSC, based in Atlanta. He started
using Borland’s products with Turbo Pascal on a CP/M machine. Often working with
Delphi, he has enjoyed exploring it since it first appeared. You can reach him via
e-mail at kbwood@compuserve.com.
Begin Listing One — RegisterDBPersistentClass
{ Extract property details for later use. }
procedure RegisterDBPersistentClass(
 clsDBP: TDBPersistentClass);
var
 slsAncestors: TStringList;
 slsPrimaryKeys: TStringList;
 clsClass: TClass;
 iIndex, iInherit, iMaxLength,
 iPropCount, iListSize: Integer;
 pplProps: PPropList;
 ppiInfo: PPropInfo;
 ptdData: PTypeData;
 ptType: TDBPropType;
 sPropName, sPropType, sTableName: string;
 bPrimaryKey: Boolean;
 lstProps: TPropertyList;
begin
 { Have properties already been processed into a list? }
 if slsGlobalProps.IndexOf(clsDBP.ClassName) > -1 then
 Exit;

 { Register the class with Delphi so it can be retrieved
 by name. }
 Classes.RegisterClass(clsDBP);

 lstProps := TPropertyList.Create;
 slsPrimaryKeys := TStringList.Create;
 slsAncestors := TStringList.Create;
 try
 { Add to the global list of properties. }
 slsGlobalProps.AddObject(clsDBP.ClassName, lstProps);
 { Find ancestor objects and their number
 of properties in order of inheritance. }
 clsClass := clsDBP;
 while clsClass.ClassName <> TDBPersistent.ClassName do
 begin
 slsAncestors.InsertObject(0, clsClass.ClassName,
 Pointer(GetPropList(clsClass.ClassInfo,
 tkProperties, nil)));
 clsClass := clsClass.ClassParent;
 end;

 { Load list of published properties for this object. }
 iPropCount :=
 Integer(slsAncestors.Objects[slsAncestors.Count-1]);
 iListSize := iPropCount * SizeOf(Pointer);
 GetMem(pplProps, iListSize);
 try
18 September 2000 Delphi Informant Magazine
 GetPropList(clsDBP.ClassInfo,tkProperties,pplProps);
 { Translate this list into a more useable format. }
 for iIndex := 0 to iPropCount - 1 do begin
 ppiInfo := pplProps^[iIndex];
 sPropName := GetPropertyName(ppiInfo);
 sPropType := GetPropertyClassName(ppiInfo);
 { See if this property is a primary key f ield
 -- type has 'TPK' prefix. }
 bPrimaryKey :=
 (Copy(sPropType,1,Length(sPKPrefix))=sPKPrefix);
 if bPrimaryKey then
 begin
 slsPrimaryKeys.Add(sPropName);
 Delete(sPropType, 1, Length(sPKPrefix));
 end;
 { Translate the property type into
 ANSI SQL type (sort of). }
 iMaxLength := 0;
 case GetPropertyClassKind(ppiInfo) of
 tkInteger:
 if (sPropType = 'Byte') or
 (sPropType = 'ShortInt') or
 (sPropType = 'SmallInt') then
 ptType := ptSmallInt
 else
 ptType := ptInteger;
 tkFloat:
 if sPropType = 'TDateTime' then
 ptType := ptDateTime
 else if sPropType = 'TDate' then
 ptType := ptDate
 else if sPropType = 'TTime' then
 ptType := ptTime
 else
 ptType := ptFloat;
 tkChar, tkWChar:
 ptType := ptChar;
 tkLString, tkString, tkWString:
 begin
 ptType := ptString;
 ptdData := GetTypeData(ppiInfo^.PropType^);
 iMaxLength := ptdData^.MaxLength;
 end;
 tkEnumeration:
 ptType := ptEnumeration;
 tkSet:
 ptType := ptSet;
 tkClass:
 begin
 ptdData := GetTypeData(ppiInfo^.PropType^);
 if ptdData.ClassType.InheritsFrom(
 TDBPersistent) then
 ptType := ptClass
 else
 raise EDBPersist.Create(Format(
 sUnsupported, [sPropName, sPropType]));
 end;
 else
 raise
 EDBPersist.Create(Format(
 sUnsupported,[sPropName, sPropType]));
 end;

 { Find the object that introduced this property. }
 for iInherit := 0 to slsAncestors.Count-1 do begin
 sTableName := slsAncestors[iInherit];
 if ppiInfo^.NameIndex < Integer(
 slsAncestors.Objects[iInherit]) then
 Break;
 end;
 Delete(sTableName, 1, 1);
 { Add property details to the list. }
 lstProps.Add(TDBProperty.Create(
 GetPropertyName(ppiInfo), sTableName, ppiInfo,
 ptType, iMaxLength, bPrimaryKey));
 end;
 { Add list of primary keys to the list. }

1

OP Tech

e

E

 lstProps.Add(slsPrimaryKeys);
 finally
 FreeMem(pplProps, iListSize);
 end;
 finally
 slsAncestors.Free;
 end;
nd;

nd Listing One
Begin Listing Two — TDBPersistent.LoadFromDB
{ Transfer database f ields to this object's properties. }
procedure TDBPersistent.LoadFromDB(dstData: TDataSet);
var
 iIndex: Integer;

 { Return the concatenated keys for this class. }
 function GetClassKey(sPropName, sForeignClass: string):
 string;
 var
 iProps: Integer;
 sPropField: string;
 lspProps: TPropertyList;
 begin
 Result := '';
 lspProps := GetPropertyList(sForeignClass);
 for iProps := 0 to lspProps.PropertiesCount - 1 do
 with lspProps.Properties[iProps] do
 if PrimaryKey then begin
 sPropField := Copy(sPropName + '_' + Name,
 1, DBManager.DBMapper.GetMaxNameLength);
 Result := Result + '`' + dstData.FieldByName(
 sPropField).AsString;
 end;
 Delete(Result, 1, 1);
 end;

begin
 for iIndex := 0 to GetPropertyCount - 1 do
 with GetProperty(iIndex) do
 if PropType = ptClass then
 ValueAsString[Name] :=
 GetClassKey(Name, GetPropertyClassName(PropInfo))
 else
 ValueAsString[Name] :=
 dstData.FieldByName(Name).AsString;
end;

{ Set the value of the property from a string. }
procedure TDBPersistent.SetValueAsString(
 sName, sValue: string);
var
 iIndex: Integer;

 { Create an instance of the nominated type and load it. }
 function CreatePersist(sForeignClass, sKeyValue: string):
 TDBPersistent;
 var
 iProps, iPos: Integer;
 clsPersist: TDBPersistentClass;
 lspProps: TPropertyList;
 sField: string;
 begin
 { Create a new object of the specif ied type. }
 try
 clsPersist :=
 TDBPersistentClass(FindClass(sForeignClass));
 Result := TDBPersistent(clsPersist.NewInstance);
 Result.FDBManager := DBManager;
 lspProps := GetPropertyList(sForeignClass);
 except
 raise EDBPersist.Create(Format(sUnknownForeign,
 [sForeignClass]));
 end;
9 September 2000 Delphi Informant Magazine
 { Load up its key f ields. }
 for iProps := 0 to lspProps.PropertiesCount - 1 do
 with lspProps.Properties[iProps] do
 if PrimaryKey then begin
 iPos := Pos('`', sKeyValue);
 if iPos > 0 then
 begin
 sField := Copy(sKeyValue, 1, iPos - 1);
 Delete(sKeyValue, 1, iPos);
 end
 else
 sField := sKeyValue;
 Result.ValueAsString[Name] := sField;
 end;
 { And read it from the database. }
 DBManager.SaveQuery;
 Result.SelectRecord;
 DBManager.RestoreQuery;
 end;

begin
 for iIndex := 0 to GetPropertyCount - 1 do
 with GetProperty(iIndex) do
 if Name = sName then begin
 { Set value based on property type –
 converting from string. }
 case PropType of
 ptEnumeration, ptInteger, ptSet, ptSmallInt:
 SetOrdProp(Self, PropInfo, StrToInt(sValue));
 ptFloat:
 SetFloatProp(Self, PropInfo,
 StrToFloat(sValue));
 ptDate, ptDateTime, ptTime:
 SetFloatProp(Self, PropInfo,
 StrToDateTime(sValue));
 ptChar:
 SetOrdProp(Self, PropInfo, Ord(sValue[1]));
 ptString:
 SetStrProp(Self, PropInfo, sValue);
 ptClass:
 if sValue = '' then { Null. }
 SetOrdProp(Self, PropInfo, Integer(nil))
 else
 SetOrdProp(Self, PropInfo, Integer(
 CreatePersist(GetPropertyClassName(
 PropInfo), sValue)));
 end;
 Exit;
 end; // if
end;

End Listing Two
Begin Listing Three — TDBPersistent demonstration classes
type
 String3 = string[3];
 String15 = string[15];
 String30 = string[30];
 String50 = string[50];

 TDebtorTerms = (dtCOD, dt7Days, dt30Days);

 TDebtorFlag = (dfVIP, dfPurchaseOrder, dfPriorityShip);
 TDebtorFlags = set of TDebtorFlag;

 TAddress = class(TDBPersistent)
 private
 FAddressId: TPKInteger;
 FCity: String50;
 FCountry: String30;
 FPostCode: String15;
 FState: String3;
 FStreet1: String50;
 FStreet2: String50;
 public
 constructor Create(dbmManager: TDBManager;

OP Tech
 AddressId: TPKInteger);
 procedure Assign(Source: TPersistent); override;
 procedure FormatAddress(slsAddress: TStrings);
 published
 property AddressId: TPKInteger
 read FAddressId write FAddressId;
 property Street1: String50
 read FStreet1 write FStreet1;
 property Street2: String50
 read FStreet2 write FStreet2;
 property City: String50 read FCity write FCity;
 property State: String3 read FState write FState;
 property PostCode: String15
 read FPostCode write FPostCode;
 property Country: String30
 read FCountry write FCountry;
 end;

 TContact = class(TDBPersistent)
 private
 FContactId: TPKInteger;
 FLastContact: TDate;
 FMailingAddr: TAddress;
 FName: String50;
 FOrganisation: String50;
 FPhysicalAddr: TAddress;
 FPhone: String15;
 public
 constructor Create(dbmManager: TDBManager;
 ContactId: TPKInteger);
 procedure Assign(Source: TPersistent); override;
 procedure FormatAddress(slsAddress: TStrings;
 bMailing: Boolean);
 published
 property ContactId: TPKInteger
 read FContactId write FContactId;
 property Name: String50 read FName write FName;
 property Organisation: String50
 read FOrganisation write FOrganisation;
 property Phone: String15 read FPhone write FPhone;
 property PhysicalAddr: TAddress
 read FPhysicalAddr write FPhysicalAddr;
 property MailingAddr: TAddress
 read FMailingAddr write FMailingAddr;
 property LastContact: TDate
 read FLastContact write FLastContact;
 end;

 TDebtor = class(TContact)
 private
 FBalance: Double;
 FFlags: TDebtorFlags;
 FTerms: TDebtorTerms;
 public
 procedure Assign(Source: TPersistent); override;
 published
 property Balance: Double read FBalance write FBalance;
 property Terms: TDebtorTerms read FTerms write FTerms;
 property Flags: TDebtorFlags read FFlags write FFlags;
 end;

End Listing Three
20 September 2000 Delphi Informant Magazine

21 September 2000 Delphi Informant Magaz

The API Calls
Windows API

By Andrew J. Wozniewicz

Figure 1: The s
Windows applica
Raw API Programming
When Size and Speed Are Paramount

Developing Windows applications in Delphi without the use of the VCL is a technique
as old as Windows itself. It requires no additional tools or libraries beyond the

standard Windows and Messages units. However, it does require a lot of patience and
perseverance, because it’s very tedious to develop applications this way.
In some cases, however, the result is more appeal-
ing for reasons of efficiency or interoperability.
This article explores this time-honored, raw-API-
style of developing Windows applications. By the
end, you’ll be able to decide if it’s something you’ll
dare to undertake.

To VCL, or Not to VCL
At its core, Delphi owes its awesome power largely
to its native collection of components, classes,
and subroutines known as the Visual Component
Library, or simply the VCL. The VCL is at the
heart of the RAD capability of Delphi, and provides
a framework for just about any type of Windows
application — from a simple “Hello World” appli-
cation, to a sophisticated network server, to a dis-
tributed application suite.

There is a price to pay for this power, however.
Even the simplest Delphi/VCL application has
a several-hundred-kilobyte footprint, and grows
rapidly with the addition of any component,
form, or data module. Moreover, the VCL
ine

ample program at run time — a minimum
tion.
defines a complex dispatch mechanism for rout-
ing Windows messages to the VCL objects. This
mechanism allows for a VCL object like TForm
to be seamlessly coupled with its corresponding
Windows object (the actual physical window
denoted by its window handle), but it intro-
duces additional layers of handling and process-
ing. These extra levels of indirection, in turn,
cause delays in handling the messages received
by the application.

Even more importantly, the extra programming
layers introduce their own idiosyncrasies on top of
the Windows API for a programmer to learn. As if
there weren’t enough complexity already! Sometimes
cutting through these Baroque embellishments is the
best course of action.

The problem of disk space, memory, and effi-
ciency of execution may be totally irrelevant
for most business applications you are likely to
write. Far too many programmers spend their
precious time worrying about petty efficiency
issues, when they should spend it polishing the
functionality of their applications, or ensuring
their applications’ robustness. With the prices of
secondary storage falling steadily and with the
processor speeds reaching into gigahertz ranges,
it seems that most of these worries should be a
thing of the past.

Yet some special applications will definitely benefit
from a direct, close-to-the-API approach. It’s for these
rare occasions that this article was written (see the
sidebar “Why on Earth Would You Do This?” on
page 27 for a further discussion). Using this approach
will also give you a new appreciation of the program-
ming power placed at your disposal by the creators
of the VCL. Note that what we’re creating is a true,
GUI-mode application with a main window, caption
bar, menu, etc., not a character-mode console applica-
tion, which is another issue altogether.

program NonVCLHelloWorld;

uses
 Messages, Windows;

{ $R *.RES. }

const
 AppName: array[0..10] of Char = 'HelloWinApp';

function WndProc(HWnd: HWND; Msg: UINT; wParam: WPARAM;
 lParam: LPARAM): LRESULT; stdcall;
begin
 case Msg of
 WM_DESTROY:
 begin
 PostQuitMessage(0);
 Result := 0;
 end
 else
 Result := DefWindowProc(HWnd, Msg, WParam, LParam);
 end;
end;

var
 C: TWndClass;
 Handle: HWND;
 Msg: TMsg;
 Result: Integer;
begin
 with WClass do begin
 style := CS_VREDRAW or CS_HREDRAW;
 lpfnWndProc := @WndProc;
 cbClsExtra := 0;
 cbWndExtra := 0;
 C.hInstance := HInstance;
 hIcon := LoadIcon(HInstance, IDI_APPLICATION);
 hCursor := LoadCursor(HInstance, IDC_ARROW);
 hbrBackground := GetStockObject(WHITE_BRUSH);
 lpszMenuName := nil;
 lpszClassName:= @AppName;
 end;
 RegisterClass(WClass);
 Handle := CreateWindow(@AppName, 'Hello World!',
 WS_OVERLAPPEDWINDOW, CW_USEDEFAULT, CW_USEDEFAULT,
 CW_USEDEFAULT, CW_USEDEFAULT, 0, 0, HInstance, nil);
 ShowWindow(Handle, SW_NORMAL);
 UpdateWindow(Handle);
 while GetMessage(Msg,0,0,0) do begin
 TranslateMessage(Msg);
 DispatchMessage(Msg);
 end;
end.

Figure 2: The source code of the raw API Hello World program.

The API Calls
The Main Window
Figure 1 shows what our API-style application is going to look
like at run time. A minimum Windows application shows a blank
window, possibly with a caption, i.e. title bar.

Figure 2 shows the complete source of the raw API Hello World
program written in Object Pascal (available for download; see end
of article for details). The listing shows the contents of the .dpr
file. Many Delphi programmers don’t even know that you can mess
around with the main project source (Project | View Source from the
Delphi menu). You can — as long as you follow the rules.

Figure 2 gives you an idea of how to create a very simple raw-API
application, but let me warn you that an application that actually does
something would take a lot more work. For one thing, we do not
concern ourselves here with details like menus, dialog boxes, toolbars,
accelerators, and myriad other important elements.

Details Explained
When you compile and run the sample program from Figure 2, you’ll
notice it behaves the way you would expect a Windows application to
behave. You can move its window around the screen or resize it
with the mouse. You can maximize or minimize the window to the
task bar via the system menu. You can also close the window to
terminate the program. All of this default functionality is provided by
Windows “for free,” or for the cost of actually creating the window
with a function call and setting up a so-called message loop. Let’s now
examine the code to discover how it accomplishes the feat of being a
well-behaved Windows GUI application.

The code begins with the uses clause listing Messages and Windows
— two standard Delphi units. The Windows unit contains most
of the Windows API procedure and function declarations, and the
Messages unit has a lot of constants identifying standard Windows
messages. Once inserted into our uses clause, these two units make all
these API declarations available to our program.

The WndProc function definition that follows is a callback function
traditionally called a “window procedure.” We’ll discuss it later. Let’s
first concentrate on the contents of the main program block.

Registering the Window Class
Before it can create any visible window, a Windows application must
register a window class. A window is always created based on a
particular window class. The class determines certain characteristics
of all windows based on it, while the individual windows may define
some additional characteristics at the time of their creation, as you
will see shortly.

Please note that window classes have nothing to do with Delphi
object classes. A window class is a system-level (Windows) entity.
A Delphi class is an object-oriented programming (Object Pascal)
construct. The two are not related for any practical purposes. When
programming with the standard VCL, you get the illusion that a
Delphi object (a TForm instance) is the same thing as a visible
window that shows up on the screen. The reality is that it takes the
complex machinery of the VCL to create this convenient illusion.

It’s time for some good news and some bad news back in the realm
of the raw API. The good news is that more than one window can be
created based on a single window class. The bad news is that even the
simplest window like ours must have a registered class, so we have to
go through all the motions of registering it.
22 September 2000 Delphi Informant Magazine
The class must be registered with Windows with the RegisterClass
function call. There also is an UnregisterClass API function that does
the opposite: removes the class registration. However, its use is not
strictly necessary in a 32-bit Windows program, since all windows
classes registered by the application will automatically be unregistered
when the application terminates.

The RegisterClass function registers a window class for subsequent
use in calls to the CreateWindow or CreateWindowEx functions. The
RegisterClass function takes a single parameter of type TWndClass.
This parameter is actually a record that must be filled in with the
appropriate class attributes before being passed to the function. Our
main program begins by filling in this record structure, which, in our
case, is called WClass.

The TWndClass Record Structure
The declaration of the TWndClass record is found in the Windows.pas
unit and is reproduced in Figure 3.

LoadIcon(HInstance, IDI_APPLICATION)
type
 tagWNDCLASSA = packed record
 style: UINT;
 lpfnWndProc: TFNWndProc;
 cbClsExtra: Integer;
 cbWndExtra: Integer;
 hInstance: HINST;
 hIcon: HICON;
 hCursor: HCURSOR;
 hbrBackground: HBRUSH;
 lpszMenuName: PAnsiChar;
 lpszClassName: PAnsiChar;
 end;

 TWndClassA = tagWNDCLASSA;
 TWndClass = TWndClassA;

Figure 3: The declaration of the TWndClass record.

The API Calls
Notice that the declaration is indirect and that several aliases for
this record type are created. The actual structure of the record is
given by the tagWNDCLASSA type declaration. The extra names
are introduced merely for the convenience of someone translating
code literally from C. In Pascal programs, we will stick with the
TWndClass type.

Filling in the style field of the TWndClass record can specify a
window class style. You can use any combination of the available
style values by combining them with a bit-wise or operator. The
values available for this field are listed in the Delphi WinAPI
online Help (search for RegisterClass first, then follow the link
to the WNDCLASS structure). Examples include CS_DBLCLKS,
CS_GLOBALCLASS, CS_NOCLOSE, etc.

In our simple application, we’re only interested in a small subset of
available styles. We are setting the class style to the combination of
(CS_VREDRAW or CS_HREDRAW), which means that the entire
client area of the window will be redrawn whenever the size of the
window changes in a horizontal or vertical dimension, or both.

The lpfnWndProc field of the TWndClass record is an address of the
window procedure for all windows of that class. We’ll be discussing
the window procedure a little later. For now, suffice it to say that
we must provide this procedure in our application if we want to be
able to process Windows messages sent to our window. Since we’re
interested in processing some messages, we created the WndProc
function in our program. Here, we set the lpfnWndProc field of the
class structure to the address of this function.

Continuing with the process of filling in the TWndClass structure,
we set the cbClsExtra and cbWndExtra fields to zero. These fields
define the class extra bytes and window extra bytes, respectively.
In practice, these parameters hold the keys to the kingdom of
application frameworks, since they may be used to associate an
object (such as an instance of a Delphi class) with the window
class or the individual window. For our purposes, they aren’t
needed right now, so we set them to zero, meaning that we
don’t need any extra bytes for data to be associated with our
class, or any of its windows. The hInstance field identifies the
application instance. We simply pass whatever value the standard
System.HInstance variable contains.

The hIcon field identifies the class icon. A class icon is used when a
window of that class is minimized. This field must be a handle of
an icon resource. An icon resource is not the same as a TIcon VCL
object. Here we explicitly use the:
23 September 2000 Delphi Informant Magazine
call to retrieve the handle of the standard default icon for a
Windows application. The IDI_APPLICATION constant is also
defined in Windows.pas.

In a similar manner, we set the hCursor field of the class structure
to a handle denoting the default mouse cursor shown when it
hovers over the window’s client area. In our case, we request
the default arrow cursor handle from Windows by calling the
LoadCursor API function with our application’s instance handle
and IDC_ARROW arguments.

The hbrBackground field indicates the handle to a brush to be used to
paint the background of a window. We make use of the GetStockObject
function to retrieve one of the Windows system brushes, which is
the white brush in our case. You can experiment with other values
to GetStockObject, such as LTGRAY_BRUSH, BLACK_BRUSH, or
even NULL_BRUSH. You can also provide your own custom brush
created with a CreateBrushIndirect function call.

As an aside, notice how the concept of a handle frequently applies
to raw API programming. A window handle, an icon handle,
and a cursor handle are but a few examples of API handles.
Handles are 32-bit token numbers that allow us to refer to system
resources. Internally, these values are indeed pointers to structures
describing the resources within Windows, but we use them in an
abstract way, passing them around to various API functions. Win-
dows hides the details of its internal structures from us behind the
façade of the API calls. These handles survive even at the level of
VCL objects in the form of a Handle property, e.g. TFont.Handle,
TForm.Handle, etc.

It is also worth noting that the hbrBackground field could, instead of a
handle to a physical brush, be set to a color value from a user-predefined
palette of system colors. For example, we might have specified:

hbrBackground := COLOR_BTNFACE + 1;

to obtain the color effect identical to that employed by a standard
Delphi form. The COLOR_XXXX system constants are also declared
in the Windows unit. The “plus one” part must be there to ensure
consistency with the constant’s meaning (ever heard of the “off by
one” programming error?).

We’re almost done filling in the TWndClass structure; only two fields
remain. The first is lpszMenuName, which we set to nil because our
simple application has no menu defined in a resource file. If we were
to enhance it, this could be the name of the main menu resource
for the application.

The second field is lpszClassName, a pointer that needs to receive the
address of the zero-terminated string with the name of the class. The
name we invent is HelloApp; it’s simply declared as character array
constant AppName. Object Pascal makes it easy to deal with even the
C-style zero-terminated strings required by many API functions. We
simply pass the address of the character array thus defined as the value
of the lpszClassName, and we are ready to register the class.

The RegisterClass Call
Fortunately, the entire complexity of registering the class resides in
correctly filling the TWndClass structure. The call to RegisterClass is
trivial in comparison.

The API Calls
If the RegisterClass function succeeds, we get back a unique ATOM
that identifies the class. An ATOM is a Word-sized token value that
identifies the unique class name within the system; it’s just another
type of a system handle. We can simply ignore the return value here.
A more sophisticated application may wish to check for it being zero,
meaning that the class registration failed.

Creating the Window
Now that we have the class registered, we can finally deal with
the business of creating our window. The window class we so
diligently defined specifies general characteristics of a window,
thereby allowing the same window class to be used for creating
many individual windows.

Remember, individual windows are always created based on registered
classes, so the effort expended in registering our class was really neces-
sary. We need to do more work, however, to create the actual window.
We’ll start by specifying the parameters to the CreateWindow function.

As you know by now, every window in Windows has a unique handle,
i.e. a number that identifies it to the system. If your program creates
multiple windows, each of these windows will have its own, different
handle. The call to the CreateWindow function returns a window handle:

Handle := CreateWindow(@AppName, 'Hello World!',
 WS_OVERLAPPEDWINDOW, CW_USEDEFAULT, CW_USEDEFAULT,
 CW_USEDEFAULT, CW_USEDEFAULT, 0, 0, HInstance, nil);

The returned handle is a key aspect of a window, allowing the system
to communicate messages to our window, and also allowing us to
identify our window in any of the numerous system function calls.
We tuck it neatly into a global variable Handle.

The CreateWindow Function
The CreateWindow function is declared in the Windows unit as follows:

function CreateWindow(lpClassName: PChar;
 lpWindowName: PChar; dwStyle: DWORD;
 X, Y, nWidth, nHeight: Integer; hWndParent: HWND;
 hMenu: HMENU; hInstance: HINST; lpParam: Pointer): HWND;

Its job is to create an overlapped, pop-up, or child window. It specifies
the window class, window title, window style, and (optionally) the
initial position and size of the window. The function also specifies the
window’s parent or owner, if any, and the window’s menu.

Not surprisingly, the first parameter of the CreateWindow function speci-
fies the window class. All that hard work with registering the class didn’t
go to waste after all! The class name can be any name previously regis-
tered with the RegisterClass function, or any of the predefined controls:
Button, Edit, Combobox, etc. Of course, it makes very little sense to
attempt to use a button as an application’s main form. But it’s worth
observing that many standard controls you know as Delphi components
are actually true windows in their own right, with their own window
procedures and all. When they appear in a Delphi application, they result
from a CreateWindow call buried somewhere deep inside the VCL.

Let’s return to the CreateWindow function. The third argument is
dwStyle, which allows us to specify the window style. The possible
values for window styles are too numerous to list here, but you can
find them in the Windows.pas unit as WS_XXXX constants, such as
WS_OVERLAPPED, WS_CAPTION, WS_BORDER, etc. They’re
also listed in the online Help (search for the CreateWindow function
24 September 2000 Delphi Informant Magazine
in the Win32 API Help). Similar to the case with the class styles, you
can combine several styles together with the or operator.

Please note that a window style and a class style are not the same thing.
Each of these “style” settings controls slightly different aspects of the
window’s appearance and behavior. While the class styles apply to all
instances of that class, i.e. all windows of a given class, the window
styles only apply to a specific window identified by a window handle.

The next two arguments to CreateWindow — X and Y — specify the
initial position of the left, top-most corner of the window, in screen
pixels, relative to the entire screen. You can either specify actual values
here, which will ensure that your window is always displayed at exactly
the designated coordinates on the screen, or you can let Windows deter-
mine the default placement by passing CW_USEDEFAULT instead —
a more common approach. This is exactly what we did. Hence the
window will appear each time in a position determined by Windows.

Similarly, the nWidth and nHeight arguments are either the desired
width and height of the window in pixels, or we can also pass the
CW_USEDEFAULT constant for each, to let Windows determine
the initial vertical and horizontal size.

Next is the hWndParent argument. It gives us the opportunity to create
our window as a child window. When you pass an existing window’s
handle in place of this argument, you would have created a dependent
child window. Child windows always appear on the surface area of their
parents. For example, all controls — such as buttons, edit boxes, and list
boxes — are children. Their CreateWindow calls must include handles to
their own parent windows. In our case, because the top-most window of
any application doesn’t typically have a parent, we simply pass a zero.

The hMenu parameter allows us to specify the main menu for the
window. It must be a handle of a menu created with a call to
CreateMenu, or it must be LoadMenu API functions. It does seem
redundant, since we had an opportunity to specify a menu when
we were registering the class. However, the default menu for the
window may only have come from a static resource bound to our
application. Here, at the time of the window creation, we also have
an opportunity to create a new custom menu on-the-fly, or even to
load a menu resource defined in a separate executable, such as a DLL
or a similar plug-in.

We have already encountered the next parameter, hInst, when regis-
tering the class. It’s the same old HInstance value from the System
unit that identifies the instance of our running application.

Last but not least, we have the lpParam that we can pass to the
CreateWindow function. This argument is an open invitation to bind
the window to a user object, such as an instance of a Delphi class.
It essentially allows us to pass an arbitrary 32-bit value, such as a
pointer or an object reference, to the window procedure so the value
will be retrieved when processing the WM_CREATE message. Here,
we don’t bother to use it, so we pass a nil value.

Congratulations! After all this work, you have succeeded in creating
a window. You can tell that the creation was successful by examining
the Handle returned by the CreateWindow call. A zero returned for
the handle indicates an error.

Showing the Window
Creating the window with the CreateWindow call is not sufficient.
It creates the window internally in the system, but the window does

type
 tagMSG = packed record
 hwnd: HWND;
 message: UINT;
 wParam: WPARAM;
 lParam: LPARAM;
 time: DWORD;
 pt: TPoint;
 end;

TMsg = tagMSG;

Figure 4: The tagMSG record structure.

The API Calls
not yet appear on the display. We must explicitly make the window
appear via a call to ShowWindow:

ShowWindow(Handle, SW_NORMAL);

As you can tell, ShowWindow takes the window handle we care-
fully preserved in the previous creation step, and then an argu-
ment that tells it whether to show the window in a minimized,
maximized, or normal state.

Although it’s not crucial for our very simplistic application, we also call
UpdateWindow to force an initial repainting of the Window’s client area.
Since we are not painting anything in the client area yet, this call is not
strictly necessary, but we better make sure it’s not forgotten later.

The Message Loop
We’ve finally arrived! After the UpdateWindow call, our main applica-
tion window is up and visible on the screen. The time has come for
our program to make itself ready to interact with the user by accepting
mouse and keyboard events. Windows maintains a message queue for
each program running. When an event such as a keystroke or a mouse
movement occurs, Windows translates that event into a message that is
being placed in the relevant application’s message queue.

The program is now ready to enter a so-called message loop in
which one by one, the messages placed by the system in our mes-
sage queue will be retrieved and processed. The basic pattern of a
message loop is as follows:

while GetMessage(Msg,0,0,0) do begin
 TranslateMessage(Msg);
 DispatchMessage(Msg);
end;

It consists of a loop, during which consecutive messages are being
retrieved from the message queue via calls to GetMessage. The first
parameter of GetMessage is another record structure defined in the
Windows unit (see Figure 4).

The definition in Figure 4 includes a TPoint, which is itself another
API structure:

TPoint = record
 x: Longint;
 y: Longint;
end;

When we look at the declaration of GetMessage in the Windows unit,
the Msg structure appears as a by-reference var parameter:

function GetMessage(var lpMsg: TMsg; hWnd: HWND;
 wMsgFilterMin, wMsgFilterMax: UINT): BOOL; stdcall;
25 September 2000 Delphi Informant Magazine
A call to GetMessage causes the lpMsg parameter to be filled with
the current message data. In our program, the second, third, and
fourth parameters are set to zero to indicate that we want to
process all messages generated to all windows in our program, so
no filtering should take place.

When a call to GetMessage returns, Windows would have filled in the
fields of the message record with the contents of the next message
from the message queue. The hWnd field of the message structure is
the handle of the window to which the message is directed. Since our
program only creates one window, this value is always the same as
the value we stored in the global Handle variable.

The Message field contains the integer identifier of the
message, for example WM_CLOSE, WM_LBUTTONDOWN,
WM_QUERYENDSESSION, etc. The identifier distinguishes
one kind of message from another. For each kind of Windows
message, there is a corresponding message identifier constant
defined in the Windows unit, each starting with the WM_ prefix,
for “Windows message.”

Each message may carry additional information specific to that mes-
sage. For example, WM_LBUTTONDOWN, which is a message
sent to a window when the user clicks the left mouse button over
the client area, provides additional information about the location of
the click in x and y client-relative coordinates. Any such additional
information is passed via a 16-bit or 32-bit lParam.

The time field of the message structure carries the information about
the system time when the message was placed in the queue. The pt
field has the mouse coordinates at the time the message was placed
in the queue.

The whole message loop works as follows: If the Message field of the
TMessage structure retrieved from the message queue is anything but
WM_QUIT, then GetMessage returns a non-zero value. If the message
happens to be WM_QUIT, GetMessage returns zero, and the while
loop terminates, thereby terminating the whole program. Inside the
message loop, the statement:

TranslateMessage(Msg);

passes the message back to Windows for some pre-processing.
What happens is that keyboard keystroke messages get translated
into character messages according to a country-dependent key-
board configuration. The correct translation from a physical key
to a particular character code becomes especially important with
non-English versions of Windows. The second statement inside
the message loop:

DispatchMessage(Msg);

sends the newly retrieved message to the window procedure of the
target window for processing. We’ll talk more about the window
procedure momentarily. Once the window procedure is finished
processing the message, control returns to DispatchMessage, then
back to the message loop, and the message loop continues with
the next GetMessage call. This all happens many times during the
course of a typical Windows application session, and ends when-
ever GetMessage returns zero, i.e. when the message is WM_QUIT.

The Window Procedure
Everything described up to this point is standard boilerplate code

The API Calls
that gets a simple Windows application up and running — overhead,
in short. So far, the window class has been registered, the window
has been created and displayed on the screen, and the message loop
is actively retrieving messages from the queue. The real application-
specific action within any program takes place inside the window
procedure, which we will dissect right now. The window procedure
in our Hello World program is called WndProc. When registering the
window class for our main window, we have indicated WndProc to
be the default window procedure. Every window procedure must be
declared in exactly the same way:

function WndProc(HWnd: HWND; Msg: UINT; wParam: WPARAM;
 lParam: LPARAM): LRESULT; stdcall;

The name of the window procedure that you declare in your pro-
gram is unimportant. We could have named our window procedure
MainWindowProc, for example, and it would work just fine. What
is important, however, is that the “procedure” (which, by the way,
is really a Pascal function returning an integer value) must declare
the exact types of the parameters and the return value just like
the previous code. Names of these parameters are again unimport-
ant, but their types and the order in which they are listed do
matter. Furthermore, the window procedure must be declared with a
standard-call calling convention.

The role of the window procedure is to process any messages
sent to the window. We do not call this subroutine explicitly
in our code; instead, we let DispatchMessage do this job — to
call our window procedure indirectly. This indirection is crucial
to understanding the flow of control in a Windows program:
The window procedure is the lowest-level “event handler” for any
events affecting a given window. It is typically a piece of code
that just sits there waiting to be called by Windows in response
to a user action.

In contrast, the main program block behaves more like a tradi-
tional, top-down application. First it runs its initialization code,
then it does its processing, and finally it terminates, thereby
halting the entire application. The apparent disconnect between
the main program block executing sequentially and the window
procedure, which just waits to be briefly called whenever there is a
message to process with Windows intervening in the middle, is at
the very foundation of the cooperative, event-driven architecture
of Windows.

Inside a Window Procedure
Let’s now examine the structure of a window procedure. I’ve already
mentioned that the term “window procedure” is really a misnomer.
The window subroutine really is a function, returning a 32-bit
integer value. The meaning of the return value could be different for
different messages, but generally is zero when the window procedure
processes the message, and non-zero otherwise. (Yes, it’s possible to
ignore messages sent to a window; more about that shortly.)

A window procedure declares an HWnd parameter, which is the
handle of the window for which the message was intended. Again,
our program only deals with one window total, but more complex
applications may have several windows of the same class open at the
same time. Each of these windows would typically be associated with
the same window procedure.

The second parameter to a window procedure is the message
identifier, such as WM_CLOSE or WM_LBUTTONDOWN. The
26 September 2000 Delphi Informant Magazine
remaining two parameters are the extra bits of data specific to each
message that is being passed along to provide more information
about the event that occurred. They are called message parameters.

Processing Window Messages
A unique number, passed as the Message parameter to the window
procedure, identifies each message that a window procedure may
receive. The message identifiers are declared as constants such as
WM_CLOSE, WM_QUIT, etc. Typically, a case construct inside
the window procedure would determine the logic for processing
each type of message.

Our window procedure, since it belongs to a minimalist application, is
concerned with only one message: WM_DESTROY. This is a message
that the system sends to each window just before destroying that
window’s internal data structures. This, in turn, gives the window
procedure an opportunity to clean up any resources that may have
been associated with that window.

We also intercept the WM_DESTROY message to indicate the
termination of the entire program. The call to PostQuitMessage
will eventually terminate the message loop in the main block of
the application. Without this call, the main window would close
and be destroyed, but the message loop would never terminate,
since there would be no WM_QUIT message to cause GetMessage
to return zero. The now windowless process would simply linger
in the background until it was manually killed from the Task
Manager’s Close Program dialog box.

As a side note, it is possible to write programs without a main
window, or any window at all. A GUI program without a user
interface? This isn’t necessarily an oxymoron, since this is precisely
how some service applications, also known as daemons, are written.

Unprocessed Messages
What happens with the multitude of other messages that a
window receives during the course of its life, but is not interested
in processing? Some of these messages must be processed, lest the
application be totally unresponsive to the user. For example, we
want the standard responses to the user resizing the window by
dragging its frame, or to the user moving the window by dragging
its caption bar. Fortunately, these kinds of standard system-level
actions are best delegated to the system to process; we don’t need
to worry about them.

The only precaution we must take is to ensure that the system gets a
chance to process any messages we aren’t interested in handling. This
is done by calling Def WindowProc, declared in the Windows unit:

function DefWindowProc(hWnd: HWND; Msg: UINT;
 wParam: WPARAM; lParam: LPARAM): LRESULT; stdcall;

That this declaration matches exactly the one prescribed for a
window procedure is not a coincidence, of course: Def WindowProc
is a window procedure. It is the default window procedure supplied
by Windows for applications to automatically process any leftover
messages an application may not be interested in processing. We
put a call to it in the catch-all else clause of the case statement
inside the WndProc.

That’s all there is to it. The application is ready to go. Congratula-
tions! You have successfully implemented a simple, raw WinAPI
application.

27 September 2000 Delphi Informant Magazine

The API Calls
Conclusion
Typically, a more ambitious Windows application would take care
of processing many more kinds of messages. My goal here was to
show the bare minimum application that you can implement without
the help of the VCL. For good or for ill, the art of creating raw
Windows API applications is now almost forgotten. With the advent
of application frameworks, regardless of the programming language of
choice, one rarely engages in the pursuit of raw API calls nowadays.
Fortunately, the basics of an API-style GUI program are relatively
simple, as you hopefully were able to see. The explanations took us a
while, but the essence could be captured in a 50-line program listing.

There are many other details about building non-VCL Delphi appli-
cations that extend beyond the scope of this article. If you are
interested in more information on this topic, please refer to http://
www.delphi-resource.com.

Even if you don’t go to the extreme of building a pure API applica-
tion, understanding the technologies underlying the VCL is well
worth the effort, and pays off in reducing the time to find and work
around bugs, and in allowing you to program things that would
otherwise be difficult to program using the framework. Raw API
programming is just one more tool for your programming toolkit.
Use it wisely, but don’t hesitate to use it when needed. ∆

The sample application referenced in this article is available on the Delphi
Informant Magazine Complete Works CD located in INFORM\00\
SEP\DI200009AW.

Andrew J. Wozniewicz is the president of Optimax Corp. (http://www.optimax.com),
a company specializing in Delphi consulting and training. He is the author of the
original Teach Yourself Delphi in 21 Days (SAMS, 1995) and numerous technical
articles. He can be reached at andrew@optimax.com.
Why on Earth Would You Do This?
So why would you ever want to build a pure API application? A good
concrete example would be in a real-time data acquisition application,
such as a medical application (EEG, ECG), trading application (tick data),
etc., where every millisecond counts. Raw API programming makes a
program more predictable within time-critical sections. Windows isn’t a
good real-time system, and it needs all the help it can get sometimes.

Another example is when dealing with restricted memory and/or CPU
power. A raw API application outperforms a VCL counterpart, while
having only a fraction of the memory and CPU requirements. Any appli-
cation developed the old-style way is simply more nimble, and much
more responsive in a way that a user can feel immediately.

Yet another example is when creating language-independent exten-
sions, plug-ins, and the like. Raw API modules have a much better
chance to be interoperable across different programming and operating
environments (C, C++, Visual Basic, Delphi, and Smalltalk on the one
hand, and Windows 3.1/95/98/2000/NT on the other).

Finally, the understanding of raw API programming helps even when
using the VCL. Sometimes, due to bugs in the VCL, or simply because
there is no other way, one has to resort to low-level API calls. Knowing
how to do that makes it possible to program around the limitations of
a framework. It also makes it possible to understand the framework
better, so that one can extend it and tweak it to the task at hand.

— Andrew J. Wozniewicz

http://www.delphi-resource.com
http://www.delphi-resource.com
http://www.optimax.com.

28 September 2000 Delphi Informant Magaz

First Look
InterBase 6 / Open Source

By Bill Todd
InterBase 6
More Than Open Source

The feature of InterBase 6 that has received the most attention is its change to being
an open source product. However, InterBase 6 also provides a host of important new

features for database developers. This article provides a brief description of many of the
new features of InterBase 6, including: large exact numerics, new administrative tools,
replication, a more powerful ALTER TABLE command, and much more.
Large Exact Numerics
Perhaps the most important new feature for
business application developers is called large exact
numerics. In prior versions, InterBase implemented
the Numeric and Decimal data types in an unusual
way. Numeric and Decimal are fixed-decimal data
types. When you declare them, you must specify two
numbers called precision and scale. Precision is the
total number of digits the column can contain; scale
is the number of digits to the right of the decimal
point. Precision is limited to 18 digits. For example,
a column declared as NUMERIC(15,2) would hold
a total of 15 digits, and two of those 15 digits would
be to the right of the decimal point. The difference
between the Numeric type and the Decimal type is
that the Numeric type always stores precision digits
and the Decimal type stores precision digits or more.

The SQL standard defines the Numeric and Deci-
mal data types primarily to provide precise storage
for money amounts, but they are equally useful
for any amount that requires a fractional part to
be stored accurately. This contrasts with floating
point data types, which store fractional amounts
approximately. This imprecision can lead to errors
that are unacceptable in financial applications. For
example, if you store monetary amounts in floating-
point format, it’s possible to add a large number of
values and have the result be off by a penny. In prior
versions of InterBase, Numeric and Decimal col-
umns whose precision was nine or less were stored
as integers; however, if the precision was greater than
nine they were stored in floating-point format, with
the resulting lack of precision in the fractional part.

InterBase 6 stores all Numeric and Decimal values
as scaled integers, so the numbers are always stored
precisely. Columns with a precision up to four are
stored as 16-bit integers. Those with a precision of
five through nine are stored as 32-bit integers and
columns whose precision is greater than nine are
ine
stored as 64-bit integers. Another important use of
the Numeric and Decimal data types in InterBase 6
is for primary keys, because generators now return
a 64-bit integer value instead of the 32-bit integer
returned in prior versions. Since there is no 64-bit
integer data type you must use Numeric or Deci-
mal to store integer values beyond the range of a
32-bit integer.

Dialects
InterBase 6 introduces the concept of dialects as
a way to implement new features required by the
SQL 92 standard that conflict with features in pre-
vious versions of InterBase. InterBase 6 implements
three dialects. Dialect one is compatible with older
versions of InterBase; dialect two is a diagnostic
mode; and dialect three introduces support for
quoted identifiers, large exact numerics, and the
SQL Date, Time, and TimeStamp data types.

In dialect one a string constant in a SQL statement
can be delimited by single or double quotes. In
dialect three, string constants must be enclosed
in single quotes. Double quotes are reserved for
the names of database objects which are reserved
words, contain spaces, contain non-ASCII charac-
ters, or are case-sensitive. Although quoted identifi-
ers can include spaces followed by other characters,
they cannot include trailing spaces.

Until now, the Date data type, which contains both
date and time information, was the only way to store
date and time information in InterBase. Dialect three
introduces the SQL 92 Date, Time, and TimeStamp
types. Date fields store date information only, Time
fields store time information only, and TimeStamp
is equivalent to the dialect one Date type and stores
both the date and time. If you back up a version 5 or
older database and restore it in version 6, all Date col-
umns and domains will be converted to TimeStamp.
InterBase 6 also introduces the CURRENT_DATE,

First Look
CURRENT_TIME, and CURRENT_TIMESTAMP functions to
retrieve the current date, time, or date and time, respectively. Also new is
the EXTRACT function for extracting information from the data types
that contain date and/or time information. For example:

EXTRACT(YEAR FROM SomeDate)

would return the year portion of the date from a Date or
TimeStamp value.

InterBase Express
InterBase Express for InterBase 6 adds a new InterBase Admin tab
to the Component palette. The Admin tab contains 11 new com-
ponents that provide an interface to the new InterBase Service,
Install, and Licensing APIs. With these components, you can install
InterBase or the InterBase client, and administer every aspect of your
InterBase server and database.

The IBBackupService and IBRestoreService components allow you to
back up and restore InterBase databases, on a client machine or on the
database server. Using the IBConfigService component, you can start and
stop the InterBase service and determine if the service is running. You can
also shut down a database, or bring a database on line. IBConfigService
also provides methods to set all of the parameters of a database, including
read-only, the SQL dialect, the number of page buffers, the sweep
interval, the asynchronous write mode, and whether space for record
versions is automatically reserved in the database pages.

Use the IBValidationService component to validate your database and
recover any transactions that are in limbo. The IBStatisticalService
reports various statistics about your database. The IBLogService is a
handy diagnostic tool that retrieves the contents of the InterBase log file
from the server. If you need to add or delete users, or make changes
to the security settings for a user, use the IBSecurityService component.
The IBLicensingService component lets you add license certificates, and
the IBServerProperties component reports server licensing and configu-
ration information. Finally, the IBInstall and IBUninstall components
let you easily install or uninstall InterBase from your application.

IBConsole
The most noticeable change in InterBase 6 is that Server Manager and
WISQL have been replaced by IBConsole. IBConsole, shown in Figure
1, is a Windows application you can use to administer InterBase servers
and databases on any platform. The IBConsole user interface is divided
29 September 2000 Delphi Informant Magazine

Figure 1: The tree pane and work pane of the IBConsole user
interface.
into a tree pane, on the left, and a work pane, on the right. The tree
pane provides a view of your InterBase servers, databases, and database
objects. Figure 1 shows two servers, each with one database, with
all nodes in the tree expanded. The tree pane lets you select and
work with servers, databases, backups, license certificates, the server
log, and users. For each database you have access to domains, tables,
views, stored procedures, external functions (also called user-defined
functions), generators, exceptions, BLOB filters, and roles.

You can work with servers and databases in two ways. The easiest way
is to right-click the server or database, and make a choice from the
context menu. The alternative is to select a server or database, and use
the main menu. Before you can work with a server, you must right-
click on InterBase Servers, the root entry in the tree pane, and choose
Register to register the server. Figure 2 shows the Register Server
and Connect dialog box. Simply enter the server’s name, choose a
network protocol, enter an alias for the server (which will appear in
the tree view) and enter a user name and password. Click OK and
the server will appear in the tree pane. Right-click on the server to
register an existing database or create a new one.

What appears in the work pane depends on what you select in the
tree pane. Figure 3 shows the work pane with a database selected. The
items in the work pane offer most of the same options you will see
on the context menu if you right-click the database in the tree pane.
To perform any task in
the work pane, simply
double-click it.

When you expand a
database you can double-
click on Domains, Tables,
Views, Stored Procedures,
External Functions, Gen-

erators, Exceptions, Blob

Filters, or Roles. Figure
4 shows the result of
double-clicking the Cus-
tomer table. The Prop-
erties tab lets you see
the structure of the
table, and the Metadata
tab shows the CREATE
TABLE statement for
the table. Permissions

Figure 2: The Register Server and
Connect dialog box.
Figure 3: The work pane with a database selected.

First Look
lists all users with access to the table and their rights. Using the
Data tab you can browse the table’s data, and Dependencies lists any
objects in the database that depend on the table. Double-clicking on
other database objects displays similar information.

Unfortunately, most of the information displayed in IBConsole is
read-only. To make changes you must still write your own SQL. Click
30 September 2000 Delphi Informant Magazine

Figure 5: The SQL editor.

Figure 4: The properties of a table.

Figure 6: The Replication Manager’s Configuration databases form.
the SQL toolbar button, or choose Tools | Interactive SQL from the
menu to open the SQL Editor shown in Figure 5. The top pane
shows your SQL script. You can enter your SQL from the keyboard,
or load an existing SQL script and execute it. Any SQL you enter
can also be saved as a script file. The bottom pane shows the result
of executing the script, or, if the script includes a SELECT statement,
the bottom pane displays the returned data.

Replication
With InterBase 6 you can replicate a source database to any number
of target databases. The targets can have different table structures and
different column names. You can replicate different tables, rows, and
columns to each target database.

Replication can be initiated by a request from a client application,
at timed intervals configured in the replication scheduler, or by
an InterBase event. You can also use synchronous replication to
propagate each change to the target database(s) as soon as it occurs.

Replication would be simple if the source database was the only
one being changed. However, if both the source and target databases
are being changed, some mechanism must be provided to resolve con-
flicts. Conflict resolution can be configured to any of three modes.
Using priority-based resolution, the database with the highest priority
takes precedence. Suppose the source database has the highest prior-
ity. In this case, an update to a record that doesn’t exist in the target
is automatically converted to an insert. An insert where the target
already contains a record with the same primary key is converted to
an update. A delete where the record doesn’t exist in the target is
ignored. Using time-stamped resolution, the change with the latest
timestamp has precedence. Using master/slave resolution, the source
database takes precedence.

For each source/target database pair you must create a configuration
database using the Replication Manager, as shown in Figure 6. While
this is a bit more work if the replication and structure is identical
for all of the targets, it provides virtually infinite flexibility if they are
not. The next step is to add the source and target databases using the
Databases tab of the Replication Manager’s main form (see Figure 7).

Use the Replication Manager’s Replications page, shown in Figure 8,
to create the replication schemata. The schemata identifies the source
Figure 7: Adding databases in the Replication Manager.

Figure 8: The Replications page of the Replication Manager.

First Look
and target databases and the tables, rows, and columns that will be
replicated. The final step is to double-click the Create system objects
icon in the Replication Manager’s control panel at the right side of
the form. This step automatically creates the log table and stored
procedures required for replication in the source database. Note that
no changes are made to the target database.

Read-only Databases
InterBase 6 databases have two modes: read-write and read-only. All
databases are created in read-write mode, but can be changed to
read-only using gbak, gfix, or IBConsole. Once a database has been
changed to read-only mode you can copy it to a CD-ROM, or any
other read-only media, and access the data. The only restrictions are
that you cannot change the data or metadata, and you can only access
generators to get their current value. For example:

SELECT GEN_ID(EMP_NO_GEN, 0) FROM EMPLOYEE

will work, and will return the current value of the EMP_NO_GEN
generator. However:

SELECT GEN_ID(EMP_NO_GEN, 1) FROM EMPLOYEE
31 September 2000 Delphi Informant Magazine

Figure 9: The Database Properties dialog box.
will fail because
the generator
cannot be incre-
mented. To
make a database
read-only using
IBConsole,
right-click the
database and
choose Properties
from the context
menu to display
the Database
Properties dialog
box shown in
Figure 9. Click
Read Only, then
click the drop-
down arrow and
choose True. Finally, click the Apply button to change the mode to
read-only. To change the mode with gbak, back up the database, then
restore it in read-only mode using the following command:

gbak -create -mode read-only employee.gbk employee.gdb

To change the mode using gfix use the following command:

gf ix -mode read_only employee.gdb

To change the mode to read-only or read-write, you must be the
owner of the database or sysdba, and you must have exclusive use
of the database.

ALTER TABLE and ALTER DOMAIN
The SQL ALTER TABLE statement now allows you to change
the name, data type, or position of an existing column in a table.
For example:

ALTER TABLE CUSTOMER
ALTER POSTAL_CODE TO ZIP_CODE

will change the name of the POSTAL_CODE field to
ZIP_CODE, and:

ALTER TABLE CUSTOMER
ALTER POSTAL_CODE TYPE VARCHAR(14)

will change the data type to VARCHAR(14). In InterBase 6, ALTER
DOMAIN also lets you change the type of a domain.

GBAK
The gbak utility now includes the functionality provided by gsplit in
InterBase 5, allowing you to back up to multiple files in a single step.
The new -service switch lets you run a backup on the server, without
copying the data across the network to the client. This can mean
substantially faster backups with less network traffic load.

Conclusion
InterBase 6 is a major upgrade. With the addition of large exact
numerics, replication, and the InterBase Express Admin tools, you
now have a full-featured SQL database server — available at no cost
— that lets you create BDE-free database applications that support
any requirement from a single user, with a modest amount of data
to hundreds of users with many gigabytes of data distributed across
multiple databases. It’s even a great database for over-the-counter
software that requires a large database on a CD-ROM.

InterBase 6 will be available for download in late June 2000 (certainly
by the time you read this) from http://www.InterBase.com. Packaged
CD editions will follow shortly thereafter. Editions with printed
documentation will cost more. ∆

Bill Todd is president of The Database Group, Inc., a database consulting and
development firm based near Phoenix. He is co-author of four database program-
ming books, including Delphi: A Developer’s Guide. He is a Contributing Editor
to Delphi Informant Magazine, and a frequent speaker at Borland Developer
Conferences in the US and Europe. Bill is also a member of Team Borland and
a nationally known trainer; he has taught Delphi programming classes across the
country and overseas. He can be reached at bill@dbginc.com.

http://www.InterBase.com

32 September 2000 Delphi Informant Magaz

New & Used

By Tim Sullivan

Figure 1: Usin
ReportBuilder 5.0 Enterprise
Reporting on a Higher Level

I began using ReportBuilder a couple of years ago with version 3.5. Since then, Digital
Metaphors has listened carefully to its users, and the product has matured significantly

as a result. With the latest version, 5.0 Enterprise, they’ve managed to create something
that blows its competitors away.
in

g

ReportBuilder is now offered in three editions.
At the low end, there is the Standard version,
which offers an excellent design-time-only report-
ing environment. It includes support for non-BDE
tables and — using their Just-In-Time components
— support for reports that don’t have databases
behind them. At the next level up, the Professional
edition allows you to let your end users design and
save queries and reports. Finally, the Enterprise edi-
tion adds Digital Metaphor’s secret weapon: RAP.

ReportBuilder offers all the features you would
expect from a good report writer: band-based
design, support for various types of data (memos,
rich text, .gif/.jpeg/.bmp images), grouping, etc.
However, it’s at the higher levels that it really
shines, with things like AutoSearch, AutoJoin,
and RAP. In addition, the architecture is remark-
ably well designed, and makes extending or
enhancing the default forms easy, without chang-
ing the source code.

ReportBuilder also includes a lot of extras that
make it stand out from other packages. These
include: a Report Wizard that helps you quickly
build reports; a Label Wizard that supports a
e

 the ReportBuilder 5.0 variable component.
majority of Avery label formats; and a Report
Explorer that provides a convenient way for end
users to store reports. It looks and feels like Win-
dows Explorer, so users understand it quickly.

What the Heck Is RAP?
RAP stands for Report Application Pascal, and
is probably the most significant enhancement to
ReportBuilder since 4.0. While there have been
numerous beta versions available for use with
the 4.x series, 5.0 is its first “official” release. It
allows end users to write event handlers for their
reports in a way that is similar to how developers
write event handlers for Delphi. This gives Report-
Builder the ability to handle extremely powerful
and complex calculations, colorings, or just about
anything else your end users might want.

At a simple level, you can drop a variable com-
ponent onto the report, right-click, and choose
Calculations. Simply assign a result to Value and go
(see Figure 1).

In addition to the ability to create variables, you
also have the power to hook the same events as in
Delphi at design time. The event handler you write
in here can be as complex as required. You can
change labels to be bold (or red) if they are above
or below some level. In short, if you can think of
it, you can do it. This brings ReportBuilder to a
level that surpasses even Crystal Reports in terms
of sheer power.

One of the things I like about RAP is how easy
it makes doing things such as building phone num-
bers and concatenating names. For example, I sepa-
rate the area code from the phone number in my
data structures. Joining these can be difficult with
a query, but it’s a breeze with RAP. This code

properly formats the fax number, whether or not the end user has

New & Used
specified an area code:

if (plClients['Fax Area'] <> '') then
 Value := '(' + plClients['Fax Area'] + ') ' +
 plClients['Fax']
else
 Value := plClients['Fax'];

AutoSearch
Another of the advanced features of ReportBuilder is AutoSearch, which
is Digital Metaphors’ term for run-time parameters. In all the report writ-
33 September 2000 Delphi Informant Magazine

Figure 2: ReportBuilder’s AutoSearch asks for all parameters
at once.

Figure 3: The AutoSearch dialog box contains several panels, one
for each item in the query designer.

type
 { TuilAutoSearchDialog }
 TuilAutoSearchDialog = class(TppAutoSearchDialog)
 protected
 procedure GetPanelClassForField(
 AField: TppAutoSearchField;
 var APanelClass: TppAutoSearchPanelClass); override;
 end;

...

procedure TuilAutoSearchDialog.GetPanelClassForField(
 AField: TppAutoSearchField;
 var APanelClass: TppAutoSearchPanelClass);
begin
 // In this case, we are going to deal with only date
 // f ields between two values. This can easily be expanded
 // to handle as many different possibilities as you want.
 if (aField.DataType in [dtDate, dtTime, dtDateTime]) and
 (aField.SearchOperator = soBetween) then
 APanelClass := TuilBetweenDatesSearchPanel;
end;

Figure 4: We need to define a new class for the AutoSearch
dialog box, and override the GetPanelClassForField method.
ers I’ve used since starting with Delphi, I’ve longed for one of the features
that Access has: the ability to ask the user for input. ReportBuilder does
Access one better by asking for all parameters at once.

For example, let’s take a report that displays a list of job applicants.
Certain end users might want to see only the applicants entered
between certain dates. Or, alternately, they might want to find a
certain last name. Figure 2 shows the AutoSearch items.

The AutoSearch dialog box pops up when the report is run. It has
several panels, one for each item in the query designer (see Figure 3).
One of the coolest things about this is that you can easily customize
the panels. For instance, you may notice that the dialog box doesn’t
have date edits on the Date Entered. For my application, I want
a formatted date input for my users. I use the Orpheus date edit
controls everywhere else in my application, so I want to register a new
class of panel that will be used instead.

To create this custom panel, we need to define a new class for
the AutoSearch dialog box and override the GetPanelClassForField
method. This method is what the AutoSearch dialog box uses to
determine what panel to display for the specified AutoSearch item,
depending on whether you’re searching between two dates, or for
dates greater than a certain value. This method has a parameter,
APanelClass, that returns the required panel.

In the previous case, where I want to have my Orpheus date edits, I
define my AutoSearch dialog box as shown in Figure 4.

Next, we need to define the panel we’re going to return. We start with
one of the base AutoSearch panel types, TppBetweenSearchPanel. We
then create our class, as shown in Figure 5.

The most important method we need to override is Init. This allows
us to take the default panel, hide the controls we don’t need, and add
the ones we do. In this case, we’re hiding the standard TEdits, and
replacing them with our TOvcEdits (see Figure 6).

The final step is to register the new dialog box class with ReportBuilder.
This is done in the initialization section of the unit, by calling:

ppRegisterForm(TppCustomAutoSearchDialog,
 TuilAutoSearchDialog);

Digital Metaphors has applied this design philosophy to just
about every aspect of ReportBuilder, so it’s extraordinarily easy
type
 TuilBetweenDatesSearchPanel =
 class(TppBetweenSearchPanel)
 private
 FOvcDateEdit1 : TOvcDateEdit;
 FOvcDateEdit2 : TOvcDateEdit;
 // Required for Orpheus controls.
 FController : TOvcController;
 protected
 procedure ShowAllValuesClickEvent(
 Sender: TObject); override;
 public
 constructor Create(aOwner: TComponent); override;
 destructor Destroy; override;
 procedure Init; override;
 function Valid: Boolean; override;
 end;

Figure 5: Declaring the TuilBetweenDatesSearchPanel class.

to replace just about any screen of the report writer, from the

New & Used
AutoSearch dialog box, to the Print Preview window, without
altering the existing source code.
34 September 2000 Delphi Informant Magazine

procedure TuilBetweenDatesSearchPanel.Init;
var
 lValues: TStrings;
begin
 inherited Init;
 // Hide the default edit boxes.
 EditControl.Visible := False;
 EditControl2.Visible := False;

 FController := TOvcController.Create(nil);

 // Create the f irst date edit.
 FOvcDateEdit1 := TOvcDateEdit.Create(Self);
 FOvcDateEdit1.Controller := FController;
 FOvcDateEdit1.Parent := Self;
 FOvcDateEdit1.Left := EditControl.Left;
 FOvcDateEdit1.Top := EditControl.Top;
 FOvcDateEdit1.Width := 150;
 // Move the AND label so it sits after the DateEdit.
 AndLabel.Left :=
 FOvcDateEdit1.Left + FOvcDateEdit1.Width + 5;
 // Create the second date edit.
 FOvcDateEdit2 := TOvcDateEdit.Create(Self);
 FOvcDateEdit2.Controller := FController;
 FOvcDateEdit2.Parent := Self;
 FOvcDateEdit2.Left := AndLabel.Left + AndLabel.Width + 5;
 FOvcDateEdit2.Top := EditControl.Top;
 FOvcDateEdit2.Width := 150;
 // Get current values (if there are any).
 lValues := TStringList.Create;
 try
 ppParseString(Field.SearchExpression, lValues);
 if (lValues.Count > 0) then
 FOvcDateEdit1.Date := ppStrToDateTime(lValues[0]);
 if (lValues.Count > 1) then
 FOvcDateEdit2.Date := ppStrToDateTime(lValues[1]);
 f inally
 lValues.Free;
 end;
end;

Figure 6: Overriding the Init method.

Figure 7: ReportBuilder’s Data Dictionary Builder.
It’s Like Webster’s for Your Data
One of the things my end users hate more than anything else in
the world is having to learn the relationships between the tables
in their application. They inevitably call me to find out if this
field links to that field, or what the AppQList table stores. Report-
Builder has a solution: the Data Dictionary, shown in Figure 7.
With this, you provide detailed descriptions of the tables, fields,
and relationships to ReportBuilder, and it does all the linking
automatically for your users.

I can almost hear you whimpering about what a nightmare setting
this up must be. Well, don’t! It’s easy, easy, easy. Double-click on
the DataDictionary component, and it brings up the dictionary
editor. You can then generate the list of tables, fields, and links. It
guesses what fields link up based on name; you simply go through
and delete the tables and links that don’t make sense. In my
application, with about 90 tables, it took me less than an hour to
develop the data dictionary.

The dictionary also allows you to specify what fields are selectable or
searchable, giving you a great amount of control over what your end
users are allowed to do. End users like it because they don’t need to
know the relationships between the tables in order to build powerful
queries, and I like it because the users don’t need to come to me any
more for that information.

End-user Assistance
One of the most difficult things for many users is getting their
minds around reporting. Most of my end users barely understand
the concept of a record, let alone writing reports. Digital Meta-
phors has come up with a great solution: Learn ReportBuilder.
This includes a stand-alone version of the report writer, some
sample data, and a 130-page tutorial-style guide. It’s a great tool
for end users to learn about report writing, and lets them play
around with data that is external to your application, learning
general report-writing techniques instead of ones specific to your
application. This provides them with a much more solid idea of
what is involved with writing reports, before attempting anything
specific to their industry.

ReportBuilder is the most powerful Delphi report writer available on
the market, hands down. Though there are other capable systems
available, ReportBuilder offers not just a fantastic designer, but
unprecedented control over altering and enhancing its look and
feel. Add to that an entire programming language, and you have
something other reporting tools simply can’t touch.

Digital Metaphors Corp.
16775 Addison Road, Suite 613
Addison, TX 75001

Phone: (972) 931-1941
Web Site: http://www.digital-metaphors.com
Price: Standard, US$249; Professional, US$495; Enterprise, US$749.

http://www.digital-metaphors.com

New & Used
Conclusion
ReportBuilder is the most powerful Delphi report writer available on
the market, hands down. While there are other capable systems avail-
able, ReportBuilder offers not just a fantastic designer, but unprec-
edented control over altering and enhancing its look and feel. Add to
that an entire programming language, and you have something other
reporting tools simply can’t touch.

Although the price for the Enterprise version may seem a little steep,
it is well worth it for a royalty-free, end-user report writer that’s fully
integrated into your software. I heartily recommend it. ∆

Tim Sullivan is the president of Unlimited Intelligence Limited and author of both
the UIL Security System and the freeware UIL Plugin System. He can be reached
at tim@uil.net.
35 September 2000 Delphi Informant Magazine

Best Practices
Directions / Commentary
The Delphi Hall of Fame

If you watch much football, you’re probably familiar with the All-Madden Team: football players of the past and present
adeemed worthy by former coach and current announcer John Madden to a roster spot on his cross-time “virtual team.”
Each sport has its Hall of Fame, wherein standout players are immor-
talized. Why not have one for Delphi, even though it doesn’t have
a physical presence? Delphi isn’t as old as football, but its wooden
anniversary is indeed upon us. Yes, it has been five years since Delphi
was released. It is traditional to bear gifts of wood on the fifth anniver-
sary. In honor of this, it might be fitting to recognize those from
the Delphi community on paper (after all, a wood-based product) for
their contributions and accomplishments. Like John Madden, I have
the audacity to name an “All Guru” team. Note that in some cases,
organizations, or even virtual organizations, are included.

So sit back, relax, and imagine a long, drawn-out drum roll — followed
by a dramatic pause — as the names of the winners are handed to the
presenter of the awards. An inscrutable grin appears on the face of the
presenter as he sees who has been included in the first-ever induction
into the Delphi Hall of Fame. The envelope, please:
§ The Delphi development team, for giving us the world’s greatest

development tool. Especially noteworthy are: Anders Hejlsberg,
the original chief architect of Delphi; Danny Thorpe, author of
Delphi Component Design; and Chuck Jazdzewski, current chief
architect of Delphi.

§ Team B, for their help and moderating influence on the newsgroups.
§ Delphi Informant Magazine (http://www.DelphiZine.com).
§ The Delphi Magazine (http://www.itecuk.com).
§ Wordware Publishing, for publishing a plethora of Delphi books

(http://www.wordware.com).
§ Robert Vivrette, for his electronic newsletter Unofficial Newsletter

of Delphi Users (http://www.undu.com).
§ Robert Czerwinksi, for the Delphi Super Page (http://delphi.
 icm.edu.pl).
§ TurboPower Software, for their Delphi programming tools, such

as SysTools, Abbrevia, AsyncPro, etc. (http://www.
 turbopower.com).
§ Jeff Duntemann, for his book Delphi Programming Explorer (co-

written with Jim Mischel and Don Taylor) and his (unfortunately
now defunct) magazine Visual Developer.

§ Charlie Calvert, for his Delphi X Unleashed books and his “Tech
Corner” on the Borland Web site.
36 September 2000 Delphi Informant Magazine
§ Ray Lischner, author of Secrets of Delphi 2, Hidden Paths of Delphi
3, and Delphi in a Nutshell.

§ Ray Konopka, author of Delphi 3 Component Design, creator
of Raize components and CodeSite, and “Delphi by Design”
columnist for Visual Developer.

§ Mark Miller, for his work on the Delphi programming produc-
tivity tools CDK (Component Development Kit), reAct (compo-
nent tester and debugger), and CodeRush (editor).

§ Marco Cantù, for his Mastering Delphi books and Delphi
Developer’s Handbook (co-written with Tim Gooch and

 John Lam).
§ Dr Bob Swart, for his Web site (http://www.drbob42.com), free

tools (such as IntraBob), and for naming everything but his
children after himself.

§ Steve Teixeira and Xavier Pacheco, for their Delphi Developer’s
Guide books.

§ Neal Rubenking, author of Delphi Programming Problem Solver
and Delphi for Dummies and columnist for PC Magazine.

§ John Ayres, for his book The Tomes of Delphi: Win32 Core API
(co-written with a host of others).

§ Alan C. Moore, Ph.D. for heading up the JEDI (Joint Endeavor
of Delphi Innovators) Project (http://www.delphi-jedi.org).

§ David Intersimone, AKA David I, “the Last Barbarian,” “no, I’m
not related to Jerry Garcia,” etc. for his perseverance, substance,
and style.

§ Steve McConnell, for his books on programming and project
management (Code Complete, Rapid Development, Software Proj-
ect Survival Guide, and After the Gold Rush).

— Clay Shannon

Clay Shannon is a Delphi developer for eMake, Inc. in Post Falls, ID. Having visited
49 states (all but Hawaii) and lived in seven, he and his family have finally settled
in northern Idaho, near beautiful Lake Coeur d’Alene. The only spuds he has seen in
Idaho have been in the grocery, and most of those are from Oregon and Washington.
Clay has been working (almost) exclusively with Delphi since the release of version 1,
and is the author of Developer’s Guide to Delphi Troubleshooting [Wordware, 1999].
You can reach him at BClayShannon@aol.com.

http://www.DelphiZine.com
http://www.itecuk.com
http://www.wordware.com
http://www.undu.com
http://delphi.icm.edu.pl
http://delphi.icm.edu.pl
http://turbopower.com
http://turbopower.com
http://www.drbob42.com
http://www.delphi-jedi.org

File | New
Directions / Commentary
Learning Windows 2000

W aith the three columns I wrote about Delphi and Linux last Spring, I’ll bet some readers are wondering if I’ll
abandon Windows programming altogether. Not quite yet. I recently purchased two operating systems: Red Hat

Linux and Windows 2000. To prepare to install and work with the latter, I decided to examine a number of new books. In
this column, I’d like to share some of my observations about them.
 Regrettably, most of these books are aimed at system administrators,
not programmers. Still, as developers, it’s helpful for us to know
as much as possible about any new version of Windows for which
we intend to create applications. These books fall into three general
categories: Windows 2000 Professional, Windows 2000 Server, and
Special Topics. I suspect the book in the last category will be of most
interest to readers of this journal.
 Windows 2000 professional books. With the exception of the final
specialized title, all of these books cover basic topics, including the
installation and configuration of the new operating system. However,
if your main concern is simply installation and setup, I recommend
Microsoft Windows 2000 Professional Installation and Configuration
Handbook by Jim Boyce [QUE, 2000, ISBN: 0-7897-2133-3]. As
with the other books I’ll discuss, this one provides an overview of the
new Windows 2000 features. However, it goes into greater detail on
planning and executing your setup of Windows 2000. Incidentally,
all of these books recommend a certain amount of planning before
the actual installation. If you’re nervous or uncertain about setting up
security or the file system, working with user accounts and groups, or
working with specific types of hardware, this may be the first book
with which you want to become familiar.
 If you would like to learn about Windows 2000 from a respected
expert, take a look at Peter Norton’s Complete Guide to Microsoft Windows
2000 Professional by Peter Norton, et al. [SAMS, 2000, ISBN: 0-672-
31778-8]. This work also provides a good deal of information on instal-
lation, along with strong sections on memory management and the
various file systems. It also broaches such important topics as working
with new technologies like DCOM and ActiveX, working with related
Microsoft applications (such as Outlook Express), and multimedia (a
favorite of mine!). The tips and warnings we have come to expect from
this software guru are scattered throughout the book, as well.
 Similar in content to Peter Norton’s treatise, Paul Cassel’s Microsoft
Windows 2000 Professional Unleashed [SAMS, 2000, ISBN: 0-672-
31742-7] covers additional topics that will be of interest to some read-
ers. Topics include a detailed exposition of the command-line interface,
using Windows 2000 on laptops, and a particularly interesting chapter
on using Windows 2000 and Linux together on the same system.
 If you are not satisfied with a work under 1,000 pages and want
a great deal of detailed information on the topics I’ve mentioned,
consider Special Edition Using Microsoft Windows 2000 Professional
by Robert Cowart and Brian Knittel [QUE, 2000, ISBN: 0-7897-
2125-2]. This book is particularly strong in its discussion of built-in
Windows 2000 applications. It even gets into a discussion on program-
ming, albeit only in VBScript. Of more interest to us is the brief section
on the Windows 2000 registry, which provides a nice overview.
 Windows 2000 Server books. Just as Windows 2000 comes in
several versions, some of the previously mentioned books are also avail-
able in Server editions. I’ll discuss the two I’ve examined. Surprisingly,
Peter Norton’s Complete Guide to Microsoft Windows 2000 Server by
37 September 2000 Delphi Informant Magazine
Peter Norton, et al. [SAMS, 2000, ISBN: 0-672-31777-X] is thinner
than the Professional edition. Although there is a certain amount of
overlap between the two, there is not as much as you might expect.
Both versions are aimed at fairly advanced users, but Windows 2000
Server provides more information on some of the exciting new features
of Windows 2000, such as Active Directory. It’s geared specifically at
system administrators, with a good deal of information on successfully
managing a Windows 2000 network. However, it also includes topics
such as TCP/IP Networking, and Remote Access Server (RAS).
 Microsoft Windows 2000 Server Unleashed by Todd Brown, Chris
Miller, and other contributors [SAMS, 2000, ISBN: 0-672-31739-7],
is also a bit shorter than the Professional version. Like the Norton
Server edition, this volume includes sizable sections on Active Direc-
tory and RAS. However, rather than having a separate chapter on
TCP/IP as Norton does, this essential protocol is discussed in various
sections throughout the book. Also, there is a bit more information
covering installation issues.
 Special category: Active Directory. Active Directory Programming by
Gil Kirkpatrick [SAMS, 2000, ISBN: 0-672-31587-4] is the book
with which I spent the most time, and it’s also the book that I
believe will be of most value to those readers who plan to write
applications specifically for Windows 2000. At the core of Windows
2000 is a new structure, Active Directory, which includes configura-
tion information for the majority of Windows 2000 administrative
services. Kirkpatrick points out that this pervasiveness will expand in
the future to encompass even more aspects of Windows 2000, as well
as other Microsoft products (such as BackOffice version 5).
 After providing an excellent and extremely detailed introduction
to Active Directory, Kirkpatrick devotes the remaining three-quarters
of this impressive work to presenting two of the programming inter-
faces: the Active Directory Services Interface (ADSI), and the Light-
weight Directory Access Protocol (LDAP) API. He first provides
a nice comparison between the two, discussing the appropriateness
of each to different environments, and then provides a plethora of
programming solutions to many common Active Directory tasks.
 For the reader who is wondering: When is he going to write about
Delphi books? The answer is: next month! As the year 2000 ends,
I plan to write about the recent Inprise/Borland Conference and
Delphi 6, as well as present another interview with a top Delphi
person and return to the Delphi Toolbox theme. Until next time ...

— Alan C. Moore, Ph.D.

Alan Moore is a Professor of Music at Kentucky State University, specializing in music
composition and music theory. He has been developing education-related applications
with the Borland languages for more than 10 years. He has published a number of
articles in various technical journals. Using Delphi, he specializes in writing custom
components and implementing multimedia capabilities in applications, particularly
sound and music. You can reach Alan on the Internet at acmdoc@aol.com.

	Table of Contents
	Delphi Tools
	dtSearch Launches Version 6.0 of dtSearch Web and Text Retrieval Engine
	Digital Metaphors Releases Learning ReportBuilder
	InfoCan Management Announces Internet Development with Delphi
	Bowne Global Solutions Launches ExtraGLOBAL
	ProtoView Launches ActiveX Component Suite 8
	Netronic Releases VC-XGantt
	LEAD Technologies Announces LEADTOOLS 12
	Tools&Comps Announces TUsersCS Security Component 1.5

	Delphi News
	Inprise/Borland and Corel Terminate Proposed Merger
	Inprise/Borland Offers JBuilder Handheld Express
	Inprise/Borland Announces Support for Enterprise Application
	Inprise/Borland Offers Visual Basic Developers Fast Path to Linux

	Dynamic Delphi
	Word Control
	A Brief Review of Automation
	Automation in Delphi
	Run-time Automation Handling
	Compile-time Automation Handling
	TWordApplication
	General Considerations
	The Word Object Model
	Conclusion

	Distributed Delphi
	The Gold Standard, MIDAS & COM
	Everyone ’s a Server and Everyone ’s a Client
	Using a Callback Interface
	Which Method Is Better?
	Deploying an Application
	Conclusion

	OP Tech
	Database Persistent Objects
	Objects to Tables
	RTTI
	Database Mapping
	There and Back
	Demonstration
	Begin Listing One —RegisterDBPersistentClass
	Begin Listing Two —TDBPersistent.LoadFromDB
	Begin Listing Three — TDBPersistent demonstration classes

	Conclusion

	The API Calls
	Raw API Programming
	To VCL,or Not to VCL
	The Main Window
	Details Explained
	Registering the Window Class
	The TWndClass Record Structure
	The RegisterClass Call
	Creating the Window
	The CreateWindow Function
	Showing the Window
	The Message Loop
	The Window Procedure
	Inside a Window Procedure
	Processing Window Messages
	Unprocessed Messages
	Conclusion
	Why on Earth Would You Do This?

	First Look
	InterBase 6
	Large Exact Numerics
	Dialects
	InterBase Express
	IBConsole
	Replication
	Read-only Databases
	ALTER TABLE and ALTER DOMAIN
	GBAK
	Conclusion

	New &Used
	ReportBuilder 5.0 Enterprise
	What the Heck Is RAP?
	AutoSearch
	It ’s Like Webster ’s for Your Data
	End-user Assistance
	Conclusion

	Best Practices
	The Delphi Hall of Fame

	File |New

